1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
use std::any::{Any, TypeId};
use std::fmt;
use std::ops::Range;
use std::sync::Arc;

use crate::error::{Error, ErrorKind};
use crate::value::{intern, Value};
use crate::vm::State;

/// A utility trait that represents a dynamic object.
///
/// The engine uses the [`Value`] type to represent values that the engine
/// knows about.  Most of these values are primitives such as integers, strings
/// or maps.  However it is also possible to expose custom types without
/// undergoing a serialization step to the engine.  For this to work a type
/// needs to implement the [`Object`] trait and be wrapped in a value with
/// [`Value::from_object`](crate::value::Value::from_object). The ownership of
/// the object will then move into the value type.
//
/// The engine uses reference counted objects with interior mutability in the
/// value type.  This means that all trait methods take `&self` and types like
/// [`Mutex`](std::sync::Mutex) need to be used to enable mutability.
//
/// Objects need to implement [`Display`](std::fmt::Display) which is used by
/// the engine to convert the object into a string if needed.  Additionally
/// [`Debug`](std::fmt::Debug) is required as well.
///
/// The exact runtime characteristics of the object are influenced by the
/// [`kind`](Self::kind) of the object.  By default an object can just be
/// stringified and methods can be called.
///
/// For examples of how to implement objects refer to [`SeqObject`] and
/// [`StructObject`].
pub trait Object: fmt::Display + fmt::Debug + Any + Sync + Send {
    /// Describes the kind of an object.
    ///
    /// If not implemented behavior for an object is [`ObjectKind::Plain`]
    /// which just means that it's stringifyable and potentially can be
    /// called or has methods.
    ///
    /// For more information see [`ObjectKind`].
    fn kind(&self) -> ObjectKind<'_> {
        ObjectKind::Plain
    }

    /// Called when the engine tries to call a method on the object.
    ///
    /// It's the responsibility of the implementer to ensure that an
    /// error is generated if an invalid method is invoked.
    ///
    /// To convert the arguments into arguments use the
    /// [`from_args`](crate::value::from_args) function.
    fn call_method(&self, state: &State, name: &str, args: &[Value]) -> Result<Value, Error> {
        let _state = state;
        let _args = args;
        Err(Error::new(
            ErrorKind::UnknownMethod,
            format!("object has no method named {name}"),
        ))
    }

    /// Called when the object is invoked directly.
    ///
    /// The default implementation just generates an error that the object
    /// cannot be invoked.
    ///
    /// To convert the arguments into arguments use the
    /// [`from_args`](crate::value::from_args) function.
    fn call(&self, state: &State, args: &[Value]) -> Result<Value, Error> {
        let _state = state;
        let _args = args;
        Err(Error::new(
            ErrorKind::InvalidOperation,
            "tried to call non callable object",
        ))
    }
}

impl dyn Object {
    /// Returns some reference to the boxed object if it is of type `T`, or None if it isn’t.
    ///
    /// This is basically the "reverse" of [`from_object`](Value::from_object).
    ///
    /// # Example
    ///
    /// ```rust
    /// # use minijinja::value::{Value, Object};
    /// use std::fmt;
    ///
    /// #[derive(Debug)]
    /// struct Thing {
    ///     id: usize,
    /// }
    ///
    /// impl fmt::Display for Thing {
    ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
    ///         fmt::Debug::fmt(self, f)
    ///     }
    /// }
    ///
    /// impl Object for Thing {}
    ///
    /// let x_value = Value::from_object(Thing { id: 42 });
    /// let value_as_obj = x_value.as_object().unwrap();
    /// let thing = value_as_obj.downcast_ref::<Thing>().unwrap();
    /// assert_eq!(thing.id, 42);
    /// ```
    pub fn downcast_ref<T: Object>(&self) -> Option<&T> {
        self.is::<T>().then(|| {
            // SAFETY: `is` ensures this type cast is correct
            unsafe { &*(self as *const dyn Object as *const T) }
        })
    }

    /// Checks if the object is of a specific type.
    pub fn is<T: Object>(&self) -> bool {
        (*self).type_id() == TypeId::of::<T>()
    }
}

impl<T: Object> Object for Arc<T> {
    #[inline]
    fn kind(&self) -> ObjectKind<'_> {
        T::kind(self)
    }

    #[inline]
    fn call_method(&self, state: &State, name: &str, args: &[Value]) -> Result<Value, Error> {
        T::call_method(self, state, name, args)
    }

    #[inline]
    fn call(&self, state: &State, args: &[Value]) -> Result<Value, Error> {
        T::call(self, state, args)
    }
}

/// A kind defines the object's behavior.
///
/// When a dynamic [`Object`] is implemented, it can be of one of the kinds
/// here.  The default behavior will be a [`Plain`](Self::Plain) object which
/// doesn't do much other than that it can be printed.  For an object to turn
/// into a [struct](Self::Struct) or [sequence](Self::Seq) the necessary kind
/// has to be returned with a pointer to itself.
///
/// Today object's can have the behavior of structs and sequences but this
/// might expand in the future.  It does mean that not all types of values can
/// be represented by objects.
#[non_exhaustive]
pub enum ObjectKind<'a> {
    /// This object is a plain object.
    ///
    /// Such an object has no attributes but it might be callable and it
    /// can be stringified.  When serialized it's serialized in it's
    /// stringified form.
    Plain,

    /// This object is a sequence.
    ///
    /// Requires that the object implements [`SeqObject`].
    Seq(&'a dyn SeqObject),

    /// This object is a struct (map with string keys).
    ///
    /// Requires that the object implements [`StructObject`].
    Struct(&'a dyn StructObject),
}

/// Provides the behavior of an [`Object`] holding sequence of values.
///
/// An object holding a sequence of values (tuple, list etc.) can be
/// represented by this trait.
///
/// # Simplified Example
///
/// For sequences which do not need any special method behavior, the [`Value`]
/// type is capable of automatically constructing a wrapper [`Object`] by using
/// [`Value::from_seq_object`].  In that case only [`SeqObject`] needs to be
/// implemented and the value will provide default implementations for
/// stringification and debug printing.
///
/// ```
/// use minijinja::value::{Value, SeqObject};
///
/// struct Point(f32, f32, f32);
///
/// impl SeqObject for Point {
///     fn get_item(&self, idx: usize) -> Option<Value> {
///         match idx {
///             0 => Some(Value::from(self.0)),
///             1 => Some(Value::from(self.1)),
///             2 => Some(Value::from(self.2)),
///             _ => None,
///         }
///     }
///
///     fn item_count(&self) -> usize {
///         3
///     }
/// }
///
/// let value = Value::from_seq_object(Point(1.0, 2.5, 3.0));
/// ```
///
/// # Full Example
///
/// This example shows how one can use [`SeqObject`] in conjunction
/// with a fully customized [`Object`].  Note that in this case not
/// only [`Object`] needs to be implemented, but also [`Debug`] and
/// [`Display`](std::fmt::Display) no longer come for free.
///
/// ```
/// use std::fmt;
/// use minijinja::value::{Value, Object, ObjectKind, SeqObject};
///
/// #[derive(Debug, Clone)]
/// struct Point(f32, f32, f32);
///
/// impl fmt::Display for Point {
///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
///         write!(f, "({}, {}, {})", self.0, self.1, self.2)
///     }
/// }
///
/// impl Object for Point {
///     fn kind(&self) -> ObjectKind<'_> {
///         ObjectKind::Seq(self)
///     }
/// }
///
/// impl SeqObject for Point {
///     fn get_item(&self, idx: usize) -> Option<Value> {
///         match idx {
///             0 => Some(Value::from(self.0)),
///             1 => Some(Value::from(self.1)),
///             2 => Some(Value::from(self.2)),
///             _ => None,
///         }
///     }
///
///     fn item_count(&self) -> usize {
///         3
///     }
/// }
///
/// let value = Value::from_object(Point(1.0, 2.5, 3.0));
/// ```
pub trait SeqObject: Send + Sync {
    /// Looks up an item by index.
    ///
    /// Sequences should provide a value for all items in the range of `0..item_count`
    /// but the engine will assume that items within the range are `Undefined`
    /// if `None` is returned.
    fn get_item(&self, idx: usize) -> Option<Value>;

    /// Returns the number of items in the sequence.
    fn item_count(&self) -> usize;
}

impl dyn SeqObject + '_ {
    /// Convenient iterator over a [`SeqObject`].
    pub fn iter(&self) -> SeqObjectIter<'_> {
        SeqObjectIter {
            seq: self,
            range: 0..self.item_count(),
        }
    }
}

impl<T: SeqObject> SeqObject for Arc<T> {
    #[inline]
    fn get_item(&self, idx: usize) -> Option<Value> {
        T::get_item(self, idx)
    }

    #[inline]
    fn item_count(&self) -> usize {
        T::item_count(self)
    }
}

impl<'a, T: SeqObject + ?Sized> SeqObject for &'a T {
    #[inline]
    fn get_item(&self, idx: usize) -> Option<Value> {
        T::get_item(self, idx)
    }

    #[inline]
    fn item_count(&self) -> usize {
        T::item_count(self)
    }
}

impl<T: Into<Value> + Send + Sync + Clone> SeqObject for [T] {
    #[inline(always)]
    fn get_item(&self, idx: usize) -> Option<Value> {
        self.get(idx).cloned().map(Into::into)
    }

    #[inline(always)]
    fn item_count(&self) -> usize {
        self.len()
    }
}

impl<T: Into<Value> + Send + Sync + Clone> SeqObject for Vec<T> {
    #[inline(always)]
    fn get_item(&self, idx: usize) -> Option<Value> {
        self.get(idx).cloned().map(Into::into)
    }

    #[inline(always)]
    fn item_count(&self) -> usize {
        self.len()
    }
}

/// Iterates over [`SeqObject`]
pub struct SeqObjectIter<'a> {
    seq: &'a dyn SeqObject,
    range: Range<usize>,
}

impl<'a> Iterator for SeqObjectIter<'a> {
    type Item = Value;

    #[inline(always)]
    fn next(&mut self) -> Option<Self::Item> {
        self.range
            .next()
            .map(|idx| self.seq.get_item(idx).unwrap_or(Value::UNDEFINED))
    }

    #[inline(always)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.range.size_hint()
    }
}

impl<'a> DoubleEndedIterator for SeqObjectIter<'a> {
    #[inline(always)]
    fn next_back(&mut self) -> Option<Self::Item> {
        self.range
            .next_back()
            .map(|idx| self.seq.get_item(idx).unwrap_or(Value::UNDEFINED))
    }
}

impl<'a> ExactSizeIterator for SeqObjectIter<'a> {}

/// Provides the behavior of an [`Object`] holding a struct.
///
/// An basic object with the shape and behavior of a struct (that means a
/// map with string keys) can be represented by this trait.
///
/// # Simplified Example
///
/// For structs which do not need any special method behavior or methods, the
/// [`Value`] type is capable of automatically constructing a wrapper [`Object`]
/// by using [`Value::from_struct_object`].  In that case only [`StructObject`]
/// needs to be implemented and the value will provide default implementations
/// for stringification and debug printing.
///
/// ```
/// use minijinja::value::{Value, StructObject};
///
/// struct Point(f32, f32, f32);
///
/// impl StructObject for Point {
///     fn get_field(&self, name: &str) -> Option<Value> {
///         match name {
///             "x" => Some(Value::from(self.0)),
///             "y" => Some(Value::from(self.1)),
///             "z" => Some(Value::from(self.2)),
///             _ => None,
///         }
///     }
///
///     fn static_fields(&self) -> Option<&'static [&'static str]> {
///         Some(&["x", "y", "z"][..])
///     }
/// }
///
/// let value = Value::from_struct_object(Point(1.0, 2.5, 3.0));
/// ```
///
/// # Full Example
///
/// The following example shows how to implement a dynamic object which
/// represents a struct.  Note that in this case not only [`Object`] needs to be
/// implemented, but also [`Debug`] and [`Display`](std::fmt::Display) no longer
/// come for free.
///
/// ```
/// use std::fmt;
/// use minijinja::value::{Value, Object, ObjectKind, StructObject};
///
/// #[derive(Debug, Clone)]
/// struct Point(f32, f32, f32);
///
/// impl fmt::Display for Point {
///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
///         write!(f, "({}, {}, {})", self.0, self.1, self.2)
///     }
/// }
///
/// impl Object for Point {
///     fn kind(&self) -> ObjectKind<'_> {
///         ObjectKind::Struct(self)
///     }
/// }
///
/// impl StructObject for Point {
///     fn get_field(&self, name: &str) -> Option<Value> {
///         match name {
///             "x" => Some(Value::from(self.0)),
///             "y" => Some(Value::from(self.1)),
///             "z" => Some(Value::from(self.2)),
///             _ => None,
///         }
///     }
///
///     fn static_fields(&self) -> Option<&'static [&'static str]> {
///         Some(&["x", "y", "z"][..])
///     }
/// }
///
/// let value = Value::from_object(Point(1.0, 2.5, 3.0));
/// ```
pub trait StructObject: Send + Sync {
    /// Invoked by the engine to get a field of a struct.
    ///
    /// Where possible it's a good idea for this to align with the return value
    /// of [`fields`](Self::fields) but it's not necessary.
    ///
    /// If an field does not exist, `None` shall be returned.
    ///
    /// A note should be made here on side effects: unlike calling objects or
    /// calling methods on objects, accessing fields is not supposed to
    /// have side effects.  Neither does this API get access to the interpreter
    /// [`State`] nor is there a channel to send out failures as only an option
    /// can be returned.  If you do plan on doing something in field access
    /// that is fallible, instead use a method call.
    fn get_field(&self, name: &str) -> Option<Value>;

    /// If possible returns a static vector of field names.
    ///
    /// If fields cannot be statically determined, then this must return `None`
    /// and [`fields`](Self::fields) should be implemented instead.  If however
    /// this method is implemented, then [`fields`](Self::fields) should not be
    /// implemented as the default implementation dispatches to here, or it has
    /// to be implemented to match the output.
    fn static_fields(&self) -> Option<&'static [&'static str]> {
        None
    }

    /// Returns a vector of field names.
    ///
    /// This should be implemented if [`static_fields`](Self::static_fields) cannot
    /// be implemented due to lifetime restrictions.  To avoid unnecessary
    /// allocations of the fields themselves it's recommended to use the
    /// [`intern`] function.  The default implementation converts the return value
    /// of [`static_fields`](Self::static_fields) into a compatible format automatically.
    fn fields(&self) -> Vec<Arc<String>> {
        self.static_fields()
            .into_iter()
            .flat_map(|fields| fields.iter().copied().map(intern))
            .collect()
    }

    /// Returns the number of fields.
    ///
    /// The default implementation uses [`fields`](Self::fields) and
    /// [`static_fields`](Self::static_fields) automatically.
    fn field_count(&self) -> usize {
        if let Some(fields) = self.static_fields() {
            fields.len()
        } else {
            self.fields().len()
        }
    }
}

impl<T: StructObject> StructObject for Arc<T> {
    #[inline]
    fn get_field(&self, name: &str) -> Option<Value> {
        T::get_field(self, name)
    }

    #[inline]
    fn static_fields(&self) -> Option<&'static [&'static str]> {
        T::static_fields(self)
    }

    #[inline]
    fn fields(&self) -> Vec<Arc<String>> {
        T::fields(self)
    }

    #[inline]
    fn field_count(&self) -> usize {
        T::field_count(self)
    }
}

impl<'a, T: StructObject + ?Sized> StructObject for &'a T {
    #[inline]
    fn get_field(&self, name: &str) -> Option<Value> {
        T::get_field(self, name)
    }

    #[inline]
    fn static_fields(&self) -> Option<&'static [&'static str]> {
        T::static_fields(self)
    }

    #[inline]
    fn fields(&self) -> Vec<Arc<String>> {
        T::fields(self)
    }

    #[inline]
    fn field_count(&self) -> usize {
        T::field_count(self)
    }
}

#[repr(transparent)]
pub struct SimpleSeqObject<T>(pub T);

impl<T: SeqObject + 'static> fmt::Display for SimpleSeqObject<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        ok!(write!(f, "["));
        for (idx, val) in (&self.0 as &dyn SeqObject).iter().enumerate() {
            if idx > 0 {
                ok!(write!(f, ", "));
            }
            ok!(write!(f, "{val:?}"));
        }
        write!(f, "]")
    }
}

impl<T: SeqObject + 'static> fmt::Debug for SimpleSeqObject<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_list()
            .entries((&self.0 as &dyn SeqObject).iter())
            .finish()
    }
}

impl<T: SeqObject + 'static> Object for SimpleSeqObject<T> {
    fn kind(&self) -> ObjectKind<'_> {
        ObjectKind::Seq(&self.0)
    }
}

#[repr(transparent)]
pub struct SimpleStructObject<T>(pub T);

impl<T: StructObject + 'static> fmt::Display for SimpleStructObject<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        ok!(write!(f, "{{"));
        for (idx, field) in self.0.fields().iter().enumerate() {
            if idx > 0 {
                ok!(write!(f, ", "));
            }
            let val = self.0.get_field(field).unwrap_or(Value::UNDEFINED);
            ok!(write!(f, "{field:?}: {val:?}"));
        }
        write!(f, "}}")
    }
}

impl<T: StructObject + 'static> fmt::Debug for SimpleStructObject<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut m = f.debug_map();
        for field in self.0.fields() {
            let value = self.0.get_field(&field).unwrap_or(Value::UNDEFINED);
            m.entry(&field, &value);
        }
        m.finish()
    }
}

impl<T: StructObject + 'static> Object for SimpleStructObject<T> {
    fn kind(&self) -> ObjectKind<'_> {
        ObjectKind::Struct(&self.0)
    }
}