1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
//! State relating to validating a WebAssembly component.
use super::{
check_max, combine_type_sizes,
core::Module,
types::{
ComponentFuncType, ComponentInstanceType, ComponentType, ComponentValType, EntityType,
InstanceType, ModuleType, RecordType, Remapping, ResourceId, Type, TypeAlloc, TypeId,
TypeList, VariantCase,
},
};
use crate::validator::names::{KebabName, KebabNameKind, KebabStr, KebabString};
use crate::{
limits::*,
types::{
ComponentDefinedType, ComponentEntityType, Context, InstanceTypeKind, LoweringInfo, Remap,
SubtypeCx, TupleType, UnionType, VariantType,
},
BinaryReaderError, CanonicalOption, ComponentExternName, ComponentExternalKind,
ComponentOuterAliasKind, ComponentTypeRef, ExternalKind, FuncType, GlobalType,
InstantiationArgKind, MemoryType, Result, TableType, TypeBounds, ValType, WasmFeatures,
};
use indexmap::{map::Entry, IndexMap, IndexSet};
use std::collections::{HashMap, HashSet};
use std::mem;
fn to_kebab_str<'a>(s: &'a str, desc: &str, offset: usize) -> Result<&'a KebabStr> {
match KebabStr::new(s) {
Some(s) => Ok(s),
None => {
if s.is_empty() {
bail!(offset, "{desc} name cannot be empty");
}
bail!(offset, "{desc} name `{s}` is not in kebab case");
}
}
}
pub(crate) struct ComponentState {
/// Whether this state is a concrete component, an instance type, or a
/// component type.
kind: ComponentKind,
// Core index spaces
pub core_types: Vec<TypeId>,
pub core_modules: Vec<TypeId>,
pub core_instances: Vec<TypeId>,
pub core_funcs: Vec<TypeId>,
pub core_memories: Vec<MemoryType>,
pub core_tables: Vec<TableType>,
pub core_globals: Vec<GlobalType>,
pub core_tags: Vec<TypeId>,
// Component index spaces
pub types: Vec<TypeId>,
pub funcs: Vec<TypeId>,
pub values: Vec<(ComponentValType, bool)>,
pub instances: Vec<TypeId>,
pub components: Vec<TypeId>,
pub imports: IndexMap<String, ComponentEntityType>,
pub exports: IndexMap<String, ComponentEntityType>,
pub kebab_named_externs: IndexSet<KebabName>,
has_start: bool,
type_size: u32,
/// A mapping of imported resources in this component.
///
/// This mapping represents all "type variables" imported into the
/// component, or resources. This could be resources imported directly as
/// a top-level type import or additionally transitively through other
/// imported instances.
///
/// The mapping element here is a "path" which is a list of indexes into
/// the import map that will be generated for this component. Each index
/// is an index into an `IndexMap`, and each list is guaranteed to have at
/// least one element.
///
/// An example of this map is:
///
/// ```wasm
/// (component
/// ;; [0] - the first import
/// (import "r" (type (sub resource)))
///
/// ;; [1] - the second import
/// (import "r2" (type (sub resource)))
///
/// (import "i" (instance
/// ;; [2, 0] - the third import, and the first export the instance
/// (export "r3" (type (sub resource)))
/// ;; [2, 1] - the third import, and the second export the instance
/// (export "r4" (type (sub resource)))
/// ))
///
/// ;; ...
/// )
/// ```
///
/// The `Vec<usize>` here can be thought of as `Vec<String>` but a
/// (hopefully) more efficient representation.
///
/// Finally note that this map is listed as an "append only" map because all
/// insertions into it should always succeed. Any insertion which overlaps
/// with a previous entry indicates a bug in the validator which needs to be
/// corrected via other means.
//
// TODO: make these `SkolemResourceId` and then go fix all the compile
// errors, don't add skolem things into the type area
imported_resources: IndexMapAppendOnly<ResourceId, Vec<usize>>,
/// A mapping of "defined" resources in this component, or those which
/// are defined within the instantiation of this component.
///
/// Defined resources, as the name implies, can sort of be thought of as
/// "these are defined within the component". Note though that the means by
/// which a local definition can occur are not simply those defined in the
/// component but also in its transitively instantiated components
/// internally. This means that this set closes over many transitive
/// internal items in addition to those defined immediately in the component
/// itself.
///
/// The `Option<ValType>` in this mapping is whether or not the underlying
/// reprsentation of the resource is known to this component. Immediately
/// defined resources, for example, will have `Some(I32)` here. Resources
/// that come from transitively defined components, for example, will have
/// `None`. In the type context all entries here are `None`.
///
/// Note that like `imported_resources` all insertions into this map are
/// expected to succeed to it's declared as append-only.
defined_resources: IndexMapAppendOnly<ResourceId, Option<ValType>>,
/// A mapping of explicitly exported resources from this component in
/// addition to the path that they're exported at.
///
/// For more information on the path here see the documentation for
/// `imported_resources`. Note that the indexes here index into the
/// list of exports of this component.
explicit_resources: IndexMap<ResourceId, Vec<usize>>,
/// The set of types which are considered "exported" from this component.
///
/// This is added to whenever a type export is found, or an instance export
/// which itself contains a type export. This additionally includes all
/// imported types since those are suitable for export as well.
///
/// This set is consulted whenever an exported item is added since all
/// referenced types must be members of this set.
exported_types: HashSet<TypeId>,
/// Same as `exported_types`, but for imports.
imported_types: HashSet<TypeId>,
/// The set of top-level resource exports and their names.
///
/// This context is used to validate method names such as `[method]foo.bar`
/// to ensure that `foo` is an exported resource and that the type mentioned
/// in a function type is actually named `foo`.
///
/// Note that imports/exports have disjoint contexts to ensure that they're
/// validated correctly. Namely you can't retroactively attach methods to an
/// import, for example.
toplevel_exported_resources: KebabNameContext,
/// Same as `toplevel_exported_resources`, but for imports.
toplevel_imported_resources: KebabNameContext,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ComponentKind {
Component,
InstanceType,
ComponentType,
}
/// Helper context used to track information about resource names for method
/// name validation.
#[derive(Default)]
struct KebabNameContext {
/// A map from a resource type id to an index in the `all_resource_names`
/// set for the name of that resource.
resource_name_map: HashMap<TypeId, usize>,
/// All known resource names in this context, used to validate static method
/// names to by ensuring that static methods' resource names are somewhere
/// in this set.
all_resource_names: IndexSet<String>,
}
#[derive(Debug, Copy, Clone)]
pub enum ExternKind {
Import,
Export,
}
impl ExternKind {
pub fn desc(&self) -> &'static str {
match self {
ExternKind::Import => "import",
ExternKind::Export => "export",
}
}
}
impl ComponentState {
pub fn new(kind: ComponentKind) -> Self {
Self {
kind,
core_types: Default::default(),
core_modules: Default::default(),
core_instances: Default::default(),
core_funcs: Default::default(),
core_memories: Default::default(),
core_tables: Default::default(),
core_globals: Default::default(),
core_tags: Default::default(),
types: Default::default(),
funcs: Default::default(),
values: Default::default(),
instances: Default::default(),
components: Default::default(),
imports: Default::default(),
exports: Default::default(),
kebab_named_externs: Default::default(),
has_start: Default::default(),
type_size: 1,
imported_resources: Default::default(),
defined_resources: Default::default(),
explicit_resources: Default::default(),
exported_types: Default::default(),
imported_types: Default::default(),
toplevel_exported_resources: Default::default(),
toplevel_imported_resources: Default::default(),
}
}
pub fn type_count(&self) -> usize {
self.core_types.len() + self.types.len()
}
pub fn instance_count(&self) -> usize {
self.core_instances.len() + self.instances.len()
}
pub fn function_count(&self) -> usize {
self.core_funcs.len() + self.funcs.len()
}
pub fn add_core_type(
components: &mut [Self],
ty: crate::CoreType,
features: &WasmFeatures,
types: &mut TypeAlloc,
offset: usize,
check_limit: bool,
) -> Result<()> {
let ty = match ty {
crate::CoreType::Func(ty) => Type::Func(ty),
crate::CoreType::Module(decls) => Type::Module(Box::new(Self::create_module_type(
components,
decls.into_vec(),
features,
types,
offset,
)?)),
};
let current = components.last_mut().unwrap();
if check_limit {
check_max(current.type_count(), 1, MAX_WASM_TYPES, "types", offset)?;
}
let id = types.push_ty(ty);
current.core_types.push(id);
Ok(())
}
pub fn add_core_module(
&mut self,
module: &Module,
types: &mut TypeAlloc,
offset: usize,
) -> Result<()> {
let imports = module.imports_for_module_type(offset)?;
// We have to clone the module's imports and exports here
// because we cannot take the data out of the `MaybeOwned`
// as it might be shared with a function validator.
let ty = Type::Module(Box::new(ModuleType {
type_size: module.type_size,
imports,
exports: module.exports.clone(),
}));
let id = types.push_ty(ty);
self.core_modules.push(id);
Ok(())
}
pub fn add_core_instance(
&mut self,
instance: crate::Instance,
types: &mut TypeAlloc,
offset: usize,
) -> Result<()> {
let instance = match instance {
crate::Instance::Instantiate { module_index, args } => {
self.instantiate_module(module_index, args.into_vec(), types, offset)?
}
crate::Instance::FromExports(exports) => {
self.instantiate_core_exports(exports.into_vec(), types, offset)?
}
};
self.core_instances.push(instance);
Ok(())
}
pub fn add_type(
components: &mut Vec<Self>,
ty: crate::ComponentType,
features: &WasmFeatures,
types: &mut TypeAlloc,
offset: usize,
check_limit: bool,
) -> Result<()> {
assert!(!components.is_empty());
let ty = match ty {
crate::ComponentType::Defined(ty) => Type::Defined(
components
.last_mut()
.unwrap()
.create_defined_type(ty, types, offset)?,
),
crate::ComponentType::Func(ty) => Type::ComponentFunc(
components
.last_mut()
.unwrap()
.create_function_type(ty, types, offset)?,
),
crate::ComponentType::Component(decls) => Type::Component(Box::new(
Self::create_component_type(components, decls.into_vec(), features, types, offset)?,
)),
crate::ComponentType::Instance(decls) => Type::ComponentInstance(Box::new(
Self::create_instance_type(components, decls.into_vec(), features, types, offset)?,
)),
crate::ComponentType::Resource { rep, dtor } => {
let component = components.last_mut().unwrap();
// Resource types cannot be declared in a type context, only
// within a component context.
if component.kind != ComponentKind::Component {
bail!(
offset,
"resources can only be defined within a concrete component"
);
}
// Current MVP restriction of the component model.
if rep != ValType::I32 {
bail!(offset, "resources can only be represented by `i32`");
}
// If specified validate that the destructor is both a valid
// function and has the correct signature.
if let Some(dtor) = dtor {
let ty = component.core_function_at(dtor, offset)?;
let ty = types[ty].as_func_type().unwrap();
if ty.params() != [rep] || ty.results() != [] {
bail!(
offset,
"core function {dtor} has wrong signature for a destructor"
);
}
}
// As this is the introduction of a resource create a fresh new
// identifier for the resource. This is then added into the
// list of defined resources for this component, notably with a
// rep listed to enable getting access to various intrinsics
// such as `resource.rep`.
let id = types.alloc_resource_id();
component.defined_resources.insert(id, Some(rep));
Type::Resource(id)
}
};
let current = components.last_mut().unwrap();
if check_limit {
check_max(current.type_count(), 1, MAX_WASM_TYPES, "types", offset)?;
}
let id = types.push_ty(ty);
current.types.push(id);
Ok(())
}
pub fn add_import(
&mut self,
import: crate::ComponentImport,
types: &mut TypeAlloc,
offset: usize,
) -> Result<()> {
let mut entity = self.check_type_ref(&import.ty, types, offset)?;
self.add_entity(
&mut entity,
Some((import.name.as_str(), ExternKind::Import)),
types,
offset,
)?;
self.toplevel_imported_resources.validate_extern(
import.name,
"import",
&entity,
types,
offset,
&mut self.kebab_named_externs,
&mut self.imports,
&mut self.type_size,
)?;
Ok(())
}
fn add_entity(
&mut self,
ty: &mut ComponentEntityType,
name_and_kind: Option<(&str, ExternKind)>,
types: &mut TypeAlloc,
offset: usize,
) -> Result<()> {
let kind = name_and_kind.map(|(_, k)| k);
let (len, max, desc) = match ty {
ComponentEntityType::Module(id) => {
self.core_modules.push(*id);
(self.core_modules.len(), MAX_WASM_MODULES, "modules")
}
ComponentEntityType::Component(id) => {
self.components.push(*id);
(self.components.len(), MAX_WASM_COMPONENTS, "components")
}
ComponentEntityType::Instance(id) => {
match kind {
Some(ExternKind::Import) => self.prepare_instance_import(id, types),
Some(ExternKind::Export) => self.prepare_instance_export(id, types),
None => {}
}
self.instances.push(*id);
(self.instance_count(), MAX_WASM_INSTANCES, "instances")
}
ComponentEntityType::Func(id) => {
self.funcs.push(*id);
(self.function_count(), MAX_WASM_FUNCTIONS, "functions")
}
ComponentEntityType::Value(ty) => {
let value_used = match kind {
Some(ExternKind::Import) | None => false,
Some(ExternKind::Export) => true,
};
self.values.push((*ty, value_used));
(self.values.len(), MAX_WASM_VALUES, "values")
}
ComponentEntityType::Type {
created,
referenced,
} => {
self.types.push(*created);
// Extra logic here for resources being imported and exported.
// Note that if `created` is the same as `referenced` then this
// is the original introduction of the resource which is where
// `self.{imported,defined}_resources` are updated.
if let Type::Resource(id) = types[*created] {
match kind {
Some(ExternKind::Import) => {
// A fresh new resource is being imported into a
// component. This arises from the import section of
// a component or from the import declaration in a
// component type. In both cases a new imported
// resource is injected with a fresh new identifier
// into our state.
if created == referenced {
self.imported_resources.insert(id, vec![self.imports.len()]);
}
}
Some(ExternKind::Export) => {
// A fresh resource is being exported from this
// component. This arises as part of the
// declaration of a component type, for example. In
// this situation brand new resource identifier is
// allocated and a definition is added, unlike the
// import case where an imported resource is added.
// Notably the representation of this new resource
// is unknown so it's listed as `None`.
if created == referenced {
self.defined_resources.insert(id, None);
}
// If this is a type export of a resource type then
// update the `explicit_resources` list. A new
// export path is about to be created for this
// resource and this keeps track of that.
self.explicit_resources.insert(id, vec![self.exports.len()]);
}
None => {}
}
}
(self.types.len(), MAX_WASM_TYPES, "types")
}
};
check_max(len, 0, max, desc, offset)?;
// Before returning perform the final validation of the type of the item
// being imported/exported. This will ensure that everything is
// appropriately named with respect to type definitions, resources, etc.
if let Some((name, kind)) = name_and_kind {
if !self.validate_and_register_named_types(Some(name), kind, ty, types) {
bail!(
offset,
"{} not valid to be used as {}",
ty.desc(),
kind.desc()
);
}
}
Ok(())
}
/// Validates that the `ty` referenced only refers to named types internally
/// and then inserts anything necessary, if applicable, to the defined sets
/// within this component.
///
/// This function will validate that `ty` only refers to named types. For
/// example if it's a record then all of its fields must refer to named
/// types. This consults either `self.imported_types` or
/// `self.exported_types` as specified by `kind`. Note that this is not
/// inherently recursive itself but it ends up being recursive since if
/// recursive members were named then all their components must also be
/// named. Consequently this check stops at the "one layer deep" position,
/// or more accurately the position where types must be named (e.g. tuples
/// aren't required to be named).
fn validate_and_register_named_types(
&mut self,
toplevel_name: Option<&str>,
kind: ExternKind,
ty: &ComponentEntityType,
types: &TypeAlloc,
) -> bool {
match self.kind {
ComponentKind::Component | ComponentKind::ComponentType => {}
ComponentKind::InstanceType => return true,
}
let set = match kind {
ExternKind::Import => &self.imported_types,
ExternKind::Export => &self.exported_types,
};
match ty {
// When a type is imported or exported than any recursive type
// referred to by that import/export must additionally be exported
// or imported. Here this walks the "first layer" of the type which
// delegates to `TypeAlloc::type_named_type_id` to determine whether
// the components of the type being named here are indeed all they
// themselves named.
ComponentEntityType::Type {
created,
referenced,
} => {
if !self.all_valtypes_named(types, *referenced, set) {
return false;
}
match kind {
// Imported types are both valid for import and valid for
// export.
ExternKind::Import => {
self.imported_types.insert(*created);
self.exported_types.insert(*created);
}
ExternKind::Export => {
self.exported_types.insert(*created);
}
}
// If this is a top-level resource then register it in the
// appropriate context so later validation of method-like-names
// works out.
if let Some(name) = toplevel_name {
if let Type::Resource(_) = types[*created] {
let cx = match kind {
ExternKind::Import => &mut self.toplevel_imported_resources,
ExternKind::Export => &mut self.toplevel_exported_resources,
};
cx.register(name, *created);
}
}
true
}
// Instances are slightly nuanced here. The general idea is that if
// an instance is imported, then any type exported by the instance
// is then also exported. Additionally for exports. To get this to
// work out this arm will recursively call
// `validate_and_register_named_types` which means that types are
// inserted into `self.{imported,exported}_types` as-we-go rather
// than all at once.
//
// This then recursively validates that all items in the instance
// itself are valid to import/export, recursive instances are
// captured, and everything is appropriately added to the right
// imported/exported set.
ComponentEntityType::Instance(i) => {
let ty = types[*i].as_component_instance_type().unwrap();
ty.exports
.values()
.all(|ty| self.validate_and_register_named_types(None, kind, ty, types))
}
// All types referred to by a function must be named.
ComponentEntityType::Func(id) => self.all_valtypes_named(types, *id, set),
ComponentEntityType::Value(ty) => types.type_named_valtype(ty, set),
// Components/modules are always "closed" or "standalone" and don't
// need validation with respect to their named types.
ComponentEntityType::Component(_) | ComponentEntityType::Module(_) => true,
}
}
fn all_valtypes_named(&self, types: &TypeAlloc, id: TypeId, set: &HashSet<TypeId>) -> bool {
match &types[id] {
Type::Defined(i) => match i {
// These types do not contain anything which must be
// named.
ComponentDefinedType::Primitive(_)
| ComponentDefinedType::Flags(_)
| ComponentDefinedType::Enum(_) => true,
// Referenced types of all these aggregates must all be
// named.
ComponentDefinedType::Record(r) => {
r.fields.values().all(|t| types.type_named_valtype(t, set))
}
ComponentDefinedType::Tuple(r) => {
r.types.iter().all(|t| types.type_named_valtype(t, set))
}
ComponentDefinedType::Union(r) => {
r.types.iter().all(|t| types.type_named_valtype(t, set))
}
ComponentDefinedType::Variant(r) => r
.cases
.values()
.filter_map(|t| t.ty.as_ref())
.all(|t| types.type_named_valtype(t, set)),
ComponentDefinedType::Result { ok, err } => {
ok.as_ref()
.map(|t| types.type_named_valtype(t, set))
.unwrap_or(true)
&& err
.as_ref()
.map(|t| types.type_named_valtype(t, set))
.unwrap_or(true)
}
ComponentDefinedType::List(ty) | ComponentDefinedType::Option(ty) => {
types.type_named_valtype(ty, set)
}
// The resource referred to by own/borrow must be named.
ComponentDefinedType::Own(id) | ComponentDefinedType::Borrow(id) => {
set.contains(id)
}
},
// Core wasm constructs are always valid with respect to
// exported types, since they have none.
Type::Module(_) | Type::Instance(_) | Type::Func(_) | Type::Array(_) => true,
// Resource types, in isolation, are always valid to import
// or export since they're either attached to an import or
// being exported.
//
// Note that further validation of this happens in `finish`,
// too.
Type::Resource(_) => true,
// Component types are validated as they are constructed,
// so all component types are valid to export if they've
// already been constructed.
Type::Component(_) => true,
// Function types must have all their parameters/results named.
Type::ComponentFunc(ty) => ty
.params
.iter()
.map(|(_, ty)| ty)
.chain(ty.results.iter().map(|(_, ty)| ty))
.all(|ty| types.type_named_valtype(ty, set)),
// Instances must recursively have all referenced types named.
Type::ComponentInstance(ty) => ty.exports.values().all(|ty| {
let id = match ty {
ComponentEntityType::Module(id)
| ComponentEntityType::Func(id)
| ComponentEntityType::Value(ComponentValType::Type(id))
| ComponentEntityType::Type { created: id, .. }
| ComponentEntityType::Instance(id)
| ComponentEntityType::Component(id) => *id,
ComponentEntityType::Value(ComponentValType::Primitive(_)) => return true,
};
self.all_valtypes_named(types, id, set)
}),
}
}
/// Updates the type `id` specified, an identifier for a component instance
/// type, to be imported into this component.
///
/// Importing an instance type into a component specially handles the
/// defined resources registered in the instance type. Notably all
/// defined resources are "freshened" into brand new type variables and
/// these new variables are substituted within the type. This is what
/// creates a new `TypeId` and may update the `id` specified.
///
/// One side effect of this operation, for example, is that if an instance
/// type is used twice to import two different instances then the instances
/// do not share resource types despite sharing the same original instance
/// type.
fn prepare_instance_import(&mut self, id: &mut TypeId, types: &mut TypeAlloc) {
let ty = types[*id].as_component_instance_type().unwrap();
// No special treatment for imports of instances which themselves have
// no defined resources
if ty.defined_resources.is_empty() {
return;
}
let mut new_ty = ComponentInstanceType {
// Copied from the input verbatim
type_size: ty.type_size,
// Copied over as temporary storage for now, and both of these are
// filled out and expanded below.
exports: ty.exports.clone(),
explicit_resources: ty.explicit_resources.clone(),
// Explicitly discard this field since the
// defined resources are lifted into `self`
defined_resources: Default::default(),
};
// Create brand new resources for all defined ones in the instance.
let resources = (0..ty.defined_resources.len())
.map(|_| types.alloc_resource_id())
.collect::<IndexSet<_>>();
// Build a map from the defined resources in `ty` to those in `new_ty`.
//
// As part of this same loop the new resources, which were previously
// defined in `ty`, now become imported variables in `self`. Their
// path for where they're imported is updated as well with
// `self.next_import_index` as the import-to-be soon.
let mut mapping = Remapping::default();
let ty = types[*id].as_component_instance_type().unwrap();
for (old, new) in ty.defined_resources.iter().zip(&resources) {
let prev = mapping.resources.insert(*old, *new);
assert!(prev.is_none());
let mut base = vec![self.imports.len()];
base.extend(ty.explicit_resources[old].iter().copied());
self.imported_resources.insert(*new, base);
}
// Using the old-to-new resource mapping perform a substitution on
// the `exports` and `explicit_resources` fields of `new_ty`
for ty in new_ty.exports.values_mut() {
types.remap_component_entity(ty, &mut mapping);
}
for (id, path) in mem::take(&mut new_ty.explicit_resources) {
let id = *mapping.resources.get(&id).unwrap_or(&id);
new_ty.explicit_resources.insert(id, path);
}
// Now that `new_ty` is complete finish its registration and then
// update `id` on the way out.
*id = types.push_ty(Type::ComponentInstance(Box::new(new_ty)));
}
/// Prepares an instance type, pointed to `id`, for being exported as a
/// concrete instance from `self`.
///
/// This will internally perform any resource "freshening" as required and
/// then additionally update metadata within `self` about resources being
/// exported or defined.
fn prepare_instance_export(&mut self, id: &mut TypeId, types: &mut TypeAlloc) {
// Exports of an instance mean that the enclosing context
// is inheriting the resources that the instance
// encapsulates. This means that the instance type
// recorded for this export will itself have no
// defined resources.
let ty = types[*id].as_component_instance_type().unwrap();
// Check to see if `defined_resources` is non-empty, and if so then
// "freshen" all the resources and inherit them to our own defined
// resources, updating `id` in the process.
//
// Note though that this specifically is not rewriting the resources of
// exported instances. The `defined_resources` set on instance types is
// a little subtle (see its documentation for more info), but the
// general idea is that for a concrete instance it's always empty. Only
// for instance type definitions does it ever have elements in it.
//
// That means that if this set is non-empty then what's happening is
// that we're in a type context an exporting an instance of a previously
// specified type. In this case all resources are required to be
// "freshened" to ensure that multiple exports of the same type all
// export different types of resources.
//
// And finally note that this operation empties out the
// `defined_resources` set of the type that is registered for the
// instance, as this export is modeled as producing a concrete instance.
if !ty.defined_resources.is_empty() {
let mut new_ty = ty.clone();
let mut mapping = Remapping::default();
for old in mem::take(&mut new_ty.defined_resources) {
let new = types.alloc_resource_id();
mapping.resources.insert(old, new);
self.defined_resources.insert(new, None);
}
for ty in new_ty.exports.values_mut() {
types.remap_component_entity(ty, &mut mapping);
}
for (id, path) in mem::take(&mut new_ty.explicit_resources) {
new_ty
.explicit_resources
.insert(mapping.resources[&id], path);
}
*id = types.push_ty(Type::ComponentInstance(Box::new(new_ty)));
}
// Any explicit resources in the instance are now additionally explicit
// in this component since it's exported.
//
// The path to each explicit resources gets one element prepended which
// is `self.next_export_index`, the index of the export about to be
// generated.
let ty = types[*id].as_component_instance_type().unwrap();
for (id, path) in ty.explicit_resources.iter() {
let mut new_path = vec![self.exports.len()];
new_path.extend(path);
self.explicit_resources.insert(*id, new_path);
}
}
pub fn add_export(
&mut self,
name: ComponentExternName<'_>,
mut ty: ComponentEntityType,
types: &mut TypeAlloc,
offset: usize,
check_limit: bool,
) -> Result<()> {
if check_limit {
check_max(self.exports.len(), 1, MAX_WASM_EXPORTS, "exports", offset)?;
}
self.add_entity(
&mut ty,
Some((name.as_str(), ExternKind::Export)),
types,
offset,
)?;
self.toplevel_exported_resources.validate_extern(
name.into(),
"export",
&ty,
types,
offset,
&mut self.kebab_named_externs,
&mut self.exports,
&mut self.type_size,
)?;
Ok(())
}
pub fn lift_function(
&mut self,
core_func_index: u32,
type_index: u32,
options: Vec<CanonicalOption>,
types: &TypeList,
offset: usize,
) -> Result<()> {
let ty = self.function_type_at(type_index, types, offset)?;
let core_ty = types[self.core_function_at(core_func_index, offset)?]
.as_func_type()
.unwrap();
// Lifting a function is for an export, so match the expected canonical ABI
// export signature
let info = ty.lower(types, false);
self.check_options(Some(core_ty), &info, &options, types, offset)?;
if core_ty.params() != info.params.as_slice() {
bail!(
offset,
"lowered parameter types `{:?}` do not match parameter types \
`{:?}` of core function {core_func_index}",
info.params.as_slice(),
core_ty.params(),
);
}
if core_ty.results() != info.results.as_slice() {
bail!(
offset,
"lowered result types `{:?}` do not match result types \
`{:?}` of core function {core_func_index}",
info.results.as_slice(),
core_ty.results()
);
}
self.funcs.push(self.types[type_index as usize]);
Ok(())
}
pub fn lower_function(
&mut self,
func_index: u32,
options: Vec<CanonicalOption>,
types: &mut TypeAlloc,
offset: usize,
) -> Result<()> {
let ty = types[self.function_at(func_index, offset)?]
.as_component_func_type()
.unwrap();
// Lowering a function is for an import, so use a function type that matches
// the expected canonical ABI import signature.
let info = ty.lower(types, true);
self.check_options(None, &info, &options, types, offset)?;
let lowered_ty = Type::Func(info.into_func_type());
let id = types.push_ty(lowered_ty);
self.core_funcs.push(id);
Ok(())
}
pub fn resource_new(
&mut self,
resource: u32,
types: &mut TypeAlloc,
offset: usize,
) -> Result<()> {
let rep = self.check_local_resource(resource, types, offset)?;
let core_ty = Type::Func(FuncType::new([rep], [ValType::I32]));
self.core_funcs.push(types.push_ty(core_ty));
Ok(())
}
pub fn resource_drop(
&mut self,
ty: crate::ComponentValType,
types: &mut TypeAlloc,
offset: usize,
) -> Result<()> {
let idx = match ty {
crate::ComponentValType::Primitive(_) => {
bail!(offset, "type-to-drop must be an own or borrow type")
}
crate::ComponentValType::Type(idx) => idx,
};
let ty = self.defined_type_at(idx, types, offset)?;
match types[ty].as_defined_type().unwrap() {
ComponentDefinedType::Own(_) | ComponentDefinedType::Borrow(_) => {}
_ => bail!(offset, "type-to-drop must be an own or borrow type"),
}
let core_ty = Type::Func(FuncType::new([ValType::I32], []));
self.core_funcs.push(types.push_ty(core_ty));
Ok(())
}
pub fn resource_rep(
&mut self,
resource: u32,
types: &mut TypeAlloc,
offset: usize,
) -> Result<()> {
let rep = self.check_local_resource(resource, types, offset)?;
let core_ty = Type::Func(FuncType::new([ValType::I32], [rep]));
self.core_funcs.push(types.push_ty(core_ty));
Ok(())
}
fn check_local_resource(&self, idx: u32, types: &TypeList, offset: usize) -> Result<ValType> {
let id = self.resource_at(idx, types, offset)?;
let resource = types[id].as_resource().unwrap();
match self.defined_resources.get(&resource).and_then(|rep| *rep) {
Some(ty) => Ok(ty),
None => bail!(offset, "type {idx} is not a local resource"),
}
}
fn resource_at<'a>(&self, idx: u32, types: &'a TypeList, offset: usize) -> Result<TypeId> {
let id = self.type_at(idx, false, offset)?;
match &types[id] {
Type::Resource(_) => Ok(id),
_ => bail!(offset, "type index {} is not a resource type", idx),
}
}
pub fn add_component(&mut self, component: ComponentType, types: &mut TypeAlloc) -> Result<()> {
let ty = Type::Component(Box::new(component));
let id = types.push_ty(ty);
self.components.push(id);
Ok(())
}
pub fn add_instance(
&mut self,
instance: crate::ComponentInstance,
types: &mut TypeAlloc,
offset: usize,
) -> Result<()> {
let instance = match instance {
crate::ComponentInstance::Instantiate {
component_index,
args,
} => self.instantiate_component(component_index, args.into_vec(), types, offset)?,
crate::ComponentInstance::FromExports(exports) => {
self.instantiate_exports(exports.into_vec(), types, offset)?
}
};
self.instances.push(instance);
Ok(())
}
pub fn add_alias(
components: &mut [Self],
alias: crate::ComponentAlias,
types: &mut TypeAlloc,
offset: usize,
) -> Result<()> {
match alias {
crate::ComponentAlias::InstanceExport {
instance_index,
kind,
name,
} => components.last_mut().unwrap().alias_instance_export(
instance_index,
kind,
name,
types,
offset,
),
crate::ComponentAlias::CoreInstanceExport {
instance_index,
kind,
name,
} => components.last_mut().unwrap().alias_core_instance_export(
instance_index,
kind,
name,
types,
offset,
),
crate::ComponentAlias::Outer { kind, count, index } => match kind {
ComponentOuterAliasKind::CoreModule => {
Self::alias_module(components, count, index, offset)
}
ComponentOuterAliasKind::CoreType => {
Self::alias_core_type(components, count, index, offset)
}
ComponentOuterAliasKind::Type => {
Self::alias_type(components, count, index, types, offset)
}
ComponentOuterAliasKind::Component => {
Self::alias_component(components, count, index, offset)
}
},
}
}
pub fn add_start(
&mut self,
func_index: u32,
args: &[u32],
results: u32,
types: &TypeList,
offset: usize,
) -> Result<()> {
if self.has_start {
return Err(BinaryReaderError::new(
"component cannot have more than one start function",
offset,
));
}
let ft = types[self.function_at(func_index, offset)?]
.as_component_func_type()
.unwrap();
if ft.params.len() != args.len() {
bail!(
offset,
"component start function requires {} arguments but was given {}",
ft.params.len(),
args.len()
);
}
if ft.results.len() as u32 != results {
bail!(
offset,
"component start function has a result count of {results} \
but the function type has a result count of {type_results}",
type_results = ft.results.len(),
);
}
let cx = SubtypeCx::new(types, types);
for (i, ((_, ty), arg)) in ft.params.iter().zip(args).enumerate() {
// Ensure the value's type is a subtype of the parameter type
cx.component_val_type(self.value_at(*arg, offset)?, ty, offset)
.with_context(|| {
format!("value type mismatch for component start function argument {i}")
})?;
}
for (_, ty) in ft.results.iter() {
self.values.push((*ty, false));
}
self.has_start = true;
Ok(())
}
fn check_options(
&self,
core_ty: Option<&FuncType>,
info: &LoweringInfo,
options: &[CanonicalOption],
types: &TypeList,
offset: usize,
) -> Result<()> {
fn display(option: CanonicalOption) -> &'static str {
match option {
CanonicalOption::UTF8 => "utf8",
CanonicalOption::UTF16 => "utf16",
CanonicalOption::CompactUTF16 => "latin1-utf16",
CanonicalOption::Memory(_) => "memory",
CanonicalOption::Realloc(_) => "realloc",
CanonicalOption::PostReturn(_) => "post-return",
}
}
let mut encoding = None;
let mut memory = None;
let mut realloc = None;
let mut post_return = None;
for option in options {
match option {
CanonicalOption::UTF8 | CanonicalOption::UTF16 | CanonicalOption::CompactUTF16 => {
match encoding {
Some(existing) => {
bail!(
offset,
"canonical encoding option `{}` conflicts with option `{}`",
display(existing),
display(*option),
)
}
None => encoding = Some(*option),
}
}
CanonicalOption::Memory(idx) => {
memory = match memory {
None => {
self.memory_at(*idx, offset)?;
Some(*idx)
}
Some(_) => {
return Err(BinaryReaderError::new(
"canonical option `memory` is specified more than once",
offset,
))
}
}
}
CanonicalOption::Realloc(idx) => {
realloc = match realloc {
None => {
let ty = types[self.core_function_at(*idx, offset)?]
.as_func_type()
.unwrap();
if ty.params()
!= [ValType::I32, ValType::I32, ValType::I32, ValType::I32]
|| ty.results() != [ValType::I32]
{
return Err(BinaryReaderError::new(
"canonical option `realloc` uses a core function with an incorrect signature",
offset,
));
}
Some(*idx)
}
Some(_) => {
return Err(BinaryReaderError::new(
"canonical option `realloc` is specified more than once",
offset,
))
}
}
}
CanonicalOption::PostReturn(idx) => {
post_return = match post_return {
None => {
let core_ty = core_ty.ok_or_else(|| {
BinaryReaderError::new(
"canonical option `post-return` cannot be specified for lowerings",
offset,
)
})?;
let ty = types[self.core_function_at(*idx, offset)?]
.as_func_type()
.unwrap();
if ty.params() != core_ty.results() || !ty.results().is_empty() {
return Err(BinaryReaderError::new(
"canonical option `post-return` uses a core function with an incorrect signature",
offset,
));
}
Some(*idx)
}
Some(_) => {
return Err(BinaryReaderError::new(
"canonical option `post-return` is specified more than once",
offset,
))
}
}
}
}
}
if info.requires_memory && memory.is_none() {
return Err(BinaryReaderError::new(
"canonical option `memory` is required",
offset,
));
}
if info.requires_realloc && realloc.is_none() {
return Err(BinaryReaderError::new(
"canonical option `realloc` is required",
offset,
));
}
Ok(())
}
fn check_type_ref(
&mut self,
ty: &ComponentTypeRef,
types: &mut TypeAlloc,
offset: usize,
) -> Result<ComponentEntityType> {
Ok(match ty {
ComponentTypeRef::Module(index) => {
let id = self.type_at(*index, true, offset)?;
types[id].as_module_type().ok_or_else(|| {
format_err!(offset, "core type index {index} is not a module type")
})?;
ComponentEntityType::Module(id)
}
ComponentTypeRef::Func(index) => {
let id = self.type_at(*index, false, offset)?;
types[id].as_component_func_type().ok_or_else(|| {
format_err!(offset, "type index {index} is not a function type")
})?;
ComponentEntityType::Func(id)
}
ComponentTypeRef::Value(ty) => {
let ty = match ty {
crate::ComponentValType::Primitive(ty) => ComponentValType::Primitive(*ty),
crate::ComponentValType::Type(index) => {
ComponentValType::Type(self.defined_type_at(*index, types, offset)?)
}
};
ComponentEntityType::Value(ty)
}
ComponentTypeRef::Type(TypeBounds::Eq(index)) => {
let referenced = self.type_at(*index, false, offset)?;
let created = types.with_unique(referenced);
ComponentEntityType::Type {
referenced,
created,
}
}
ComponentTypeRef::Type(TypeBounds::SubResource) => {
let id = types.alloc_resource_id();
let id = types.push_ty(Type::Resource(id));
ComponentEntityType::Type {
referenced: id,
created: id,
}
}
ComponentTypeRef::Instance(index) => {
let id = self.type_at(*index, false, offset)?;
types[id].as_component_instance_type().ok_or_else(|| {
format_err!(offset, "type index {index} is not an instance type")
})?;
ComponentEntityType::Instance(id)
}
ComponentTypeRef::Component(index) => {
let id = self.type_at(*index, false, offset)?;
types[id].as_component_type().ok_or_else(|| {
format_err!(offset, "type index {index} is not a component type")
})?;
ComponentEntityType::Component(id)
}
})
}
pub fn export_to_entity_type(
&mut self,
export: &crate::ComponentExport,
types: &mut TypeAlloc,
offset: usize,
) -> Result<ComponentEntityType> {
let actual = match export.kind {
ComponentExternalKind::Module => {
ComponentEntityType::Module(self.module_at(export.index, offset)?)
}
ComponentExternalKind::Func => {
ComponentEntityType::Func(self.function_at(export.index, offset)?)
}
ComponentExternalKind::Value => {
ComponentEntityType::Value(*self.value_at(export.index, offset)?)
}
ComponentExternalKind::Type => {
let referenced = self.type_at(export.index, false, offset)?;
let created = types.with_unique(referenced);
ComponentEntityType::Type {
referenced,
created,
}
}
ComponentExternalKind::Instance => {
ComponentEntityType::Instance(self.instance_at(export.index, offset)?)
}
ComponentExternalKind::Component => {
ComponentEntityType::Component(self.component_at(export.index, offset)?)
}
};
let ascribed = match &export.ty {
Some(ty) => self.check_type_ref(ty, types, offset)?,
None => return Ok(actual),
};
SubtypeCx::new(types, types)
.component_entity_type(&actual, &ascribed, offset)
.with_context(|| "ascribed type of export is not compatible with item's type")?;
Ok(ascribed)
}
fn create_module_type(
components: &[Self],
decls: Vec<crate::ModuleTypeDeclaration>,
features: &WasmFeatures,
types: &mut TypeAlloc,
offset: usize,
) -> Result<ModuleType> {
let mut state = Module::default();
for decl in decls {
match decl {
crate::ModuleTypeDeclaration::Type(ty) => {
state.add_type(ty, features, types, offset, true)?;
}
crate::ModuleTypeDeclaration::Export { name, ty } => {
let ty = state.check_type_ref(&ty, features, types, offset)?;
state.add_export(name, ty, features, offset, true)?;
}
crate::ModuleTypeDeclaration::OuterAlias { kind, count, index } => {
if count > 1 {
return Err(BinaryReaderError::new(
"outer type aliases in module type declarations are limited to a maximum count of 1",
offset,
));
}
match kind {
crate::OuterAliasKind::Type => {
let ty = if count == 0 {
// Local alias, check the local module state
state.type_id_at(index, offset)?
} else {
// Otherwise, check the enclosing component state
let component =
Self::check_alias_count(components, count - 1, offset)?;
component.type_at(index, true, offset)?
};
check_max(state.types.len(), 1, MAX_WASM_TYPES, "types", offset)?;
state.types.push(ty);
}
}
}
crate::ModuleTypeDeclaration::Import(import) => {
state.add_import(import, features, types, offset)?;
}
}
}
let imports = state.imports_for_module_type(offset)?;
Ok(ModuleType {
type_size: state.type_size,
imports,
exports: state.exports,
})
}
fn create_component_type(
components: &mut Vec<Self>,
decls: Vec<crate::ComponentTypeDeclaration>,
features: &WasmFeatures,
types: &mut TypeAlloc,
offset: usize,
) -> Result<ComponentType> {
components.push(ComponentState::new(ComponentKind::ComponentType));
for decl in decls {
match decl {
crate::ComponentTypeDeclaration::CoreType(ty) => {
Self::add_core_type(components, ty, features, types, offset, true)?;
}
crate::ComponentTypeDeclaration::Type(ty) => {
Self::add_type(components, ty, features, types, offset, true)?;
}
crate::ComponentTypeDeclaration::Export { name, ty } => {
let current = components.last_mut().unwrap();
let ty = current.check_type_ref(&ty, types, offset)?;
current.add_export(name, ty, types, offset, true)?;
}
crate::ComponentTypeDeclaration::Import(import) => {
components
.last_mut()
.unwrap()
.add_import(import, types, offset)?;
}
crate::ComponentTypeDeclaration::Alias(alias) => {
Self::add_alias(components, alias, types, offset)?;
}
};
}
components.pop().unwrap().finish(types, offset)
}
fn create_instance_type(
components: &mut Vec<Self>,
decls: Vec<crate::InstanceTypeDeclaration>,
features: &WasmFeatures,
types: &mut TypeAlloc,
offset: usize,
) -> Result<ComponentInstanceType> {
components.push(ComponentState::new(ComponentKind::InstanceType));
for decl in decls {
match decl {
crate::InstanceTypeDeclaration::CoreType(ty) => {
Self::add_core_type(components, ty, features, types, offset, true)?;
}
crate::InstanceTypeDeclaration::Type(ty) => {
Self::add_type(components, ty, features, types, offset, true)?;
}
crate::InstanceTypeDeclaration::Export { name, ty } => {
let current = components.last_mut().unwrap();
let ty = current.check_type_ref(&ty, types, offset)?;
current.add_export(name, ty, types, offset, true)?;
}
crate::InstanceTypeDeclaration::Alias(alias) => {
Self::add_alias(components, alias, types, offset)?;
}
};
}
let mut state = components.pop().unwrap();
assert!(state.imported_resources.is_empty());
Ok(ComponentInstanceType {
type_size: state.type_size,
// The defined resources for this instance type are those listed on
// the component state. The path to each defined resource is
// guaranteed to live within the `explicit_resources` map since,
// when in the type context, the introduction of any defined
// resource must have been done with `(export "x" (type (sub
// resource)))` which, in a sense, "fuses" the introduction of the
// variable with the export. This means that all defined resources,
// if any, should be guaranteed to have an `explicit_resources` path
// listed.
defined_resources: mem::take(&mut state.defined_resources)
.into_iter()
.map(|(id, rep)| {
assert!(rep.is_none());
id
})
.collect(),
// The map of what resources are explicitly exported and where
// they're exported is plumbed through as-is.
explicit_resources: mem::take(&mut state.explicit_resources),
exports: mem::take(&mut state.exports),
})
}
fn create_function_type(
&self,
ty: crate::ComponentFuncType,
types: &TypeList,
offset: usize,
) -> Result<ComponentFuncType> {
let mut type_size = 1;
let mut set =
HashSet::with_capacity(std::cmp::max(ty.params.len(), ty.results.type_count()));
let params = ty
.params
.iter()
.map(|(name, ty)| {
let name = to_kebab_str(name, "function parameter", offset)?;
if !set.insert(name) {
bail!(
offset,
"function parameter name `{name}` conflicts with previous parameter name `{prev}`",
prev = set.get(&name).unwrap(),
);
}
let ty = self.create_component_val_type(*ty, types, offset)?;
type_size = combine_type_sizes(type_size, ty.type_size(), offset)?;
Ok((name.to_owned(), ty))
})
.collect::<Result<_>>()?;
set.clear();
let results = ty
.results
.iter()
.map(|(name, ty)| {
let name = name
.map(|name| {
let name = to_kebab_str(name, "function result", offset)?;
if !set.insert(name) {
bail!(
offset,
"function result name `{name}` conflicts with previous result name `{prev}`",
prev = set.get(name).unwrap(),
);
}
Ok(name.to_owned())
})
.transpose()?;
let ty = self.create_component_val_type(*ty, types, offset)?;
type_size = combine_type_sizes(type_size, ty.type_size(), offset)?;
Ok((name, ty))
})
.collect::<Result<_>>()?;
Ok(ComponentFuncType {
type_size,
params,
results,
})
}
fn instantiate_module(
&self,
module_index: u32,
module_args: Vec<crate::InstantiationArg>,
types: &mut TypeAlloc,
offset: usize,
) -> Result<TypeId> {
fn insert_arg<'a>(
name: &'a str,
arg: &'a InstanceType,
args: &mut IndexMap<&'a str, &'a InstanceType>,
offset: usize,
) -> Result<()> {
if args.insert(name, arg).is_some() {
bail!(
offset,
"duplicate module instantiation argument named `{name}`"
);
}
Ok(())
}
let module_type_id = self.module_at(module_index, offset)?;
let mut args = IndexMap::new();
// Populate the arguments
for module_arg in module_args {
match module_arg.kind {
InstantiationArgKind::Instance => {
let instance_type = types[self.core_instance_at(module_arg.index, offset)?]
.as_instance_type()
.unwrap();
insert_arg(module_arg.name, instance_type, &mut args, offset)?;
}
}
}
// Validate the arguments
let module_type = types[module_type_id].as_module_type().unwrap();
let cx = SubtypeCx::new(types, types);
for ((module, name), expected) in module_type.imports.iter() {
let instance = args.get(module.as_str()).ok_or_else(|| {
format_err!(
offset,
"missing module instantiation argument named `{module}`"
)
})?;
let arg = instance
.internal_exports(types)
.get(name.as_str())
.ok_or_else(|| {
format_err!(
offset,
"module instantiation argument `{module}` does not \
export an item named `{name}`",
)
})?;
cx.entity_type(arg, expected, offset).with_context(|| {
format!(
"type mismatch for export `{name}` of module \
instantiation argument `{module}`"
)
})?;
}
let ty = Type::Instance(Box::new(InstanceType {
type_size: module_type
.exports
.iter()
.fold(1, |acc, (_, ty)| acc + ty.type_size()),
kind: InstanceTypeKind::Instantiated(module_type_id),
}));
Ok(types.push_ty(ty))
}
fn instantiate_component(
&mut self,
component_index: u32,
component_args: Vec<crate::ComponentInstantiationArg>,
types: &mut TypeAlloc,
offset: usize,
) -> Result<TypeId> {
let component_type_id = self.component_at(component_index, offset)?;
let mut args = IndexMap::new();
// Populate the arguments
for component_arg in component_args {
let ty = match component_arg.kind {
ComponentExternalKind::Module => {
ComponentEntityType::Module(self.module_at(component_arg.index, offset)?)
}
ComponentExternalKind::Component => {
ComponentEntityType::Component(self.component_at(component_arg.index, offset)?)
}
ComponentExternalKind::Instance => {
ComponentEntityType::Instance(self.instance_at(component_arg.index, offset)?)
}
ComponentExternalKind::Func => {
ComponentEntityType::Func(self.function_at(component_arg.index, offset)?)
}
ComponentExternalKind::Value => {
ComponentEntityType::Value(*self.value_at(component_arg.index, offset)?)
}
ComponentExternalKind::Type => {
let ty = self.type_at(component_arg.index, false, offset)?;
ComponentEntityType::Type {
referenced: ty,
created: ty,
}
}
};
match args.entry(component_arg.name.to_string()) {
Entry::Occupied(e) => {
bail!(
offset,
"instantiation argument `{name}` conflicts with previous argument `{prev}`",
prev = e.key(),
name = component_arg.name
);
}
Entry::Vacant(e) => {
e.insert(ty);
}
}
}
// Here comes the fun part of the component model, we're instantiating
// the component with type `component_type_id` with the `args`
// specified. Easy enough!
//
// This operation, however, is one of the lynchpins of safety in the
// component model. Additionally what this ends up implementing ranges
// from "well just check the types are equal" to "let's have a
// full-blown ML-style module type system in the component model". There
// are primarily two major tricky pieces to the component model which
// make this operation, instantiating components, hard:
//
// 1. Components can import and exports other components. This means
// that arguments to instantiation are along the lines of functions
// being passed to functions or similar. Effectively this means that
// the term "variance" comes into play with either contravariance
// or covariance depending on where you are in typechecking. This is
// one of the main rationales, however, that this check below is a
// check for subtyping as opposed to exact type equivalence. For
// example an instance that exports something is a subtype of an
// instance that exports nothing. Components get a bit trick since
// they both have imports and exports. My way of thinking about it
// is "who's asking for what". If you're asking for imports then
// I need to at least supply those imports, but I can possibly
// supply more. If you're asking for a thing which you'll give a set
// of imports, then I can give you something which takes less imports
// because what you give still suffices. (things like that). The
// real complication with components, however, comes with...
//
// 2. Resources. Resources in the component model are akin to "abstract
// types". They're not abstract in the sense that they have no
// representation, they're always backed by a 32-bit integer right
// now. Instead they're abstract in the sense that some components
// aren't allowed to understand the representation of a resource.
// For example if you import a resource you can't get the underlying
// internals of it. Furthermore the resource is strictly tracked
// within the component with `own` and `borrow` runtime semantics.
// The hardest part about resources, though, is handling them as
// part of instantiation and subtyping.
//
// For example one major aspect of resources is that if a component
// exports a resource then each instantiation of the component
// produces a fresh resource type. This means that the type recorded
// for the instantiation here can't simply be "I instantiated
// component X" since in such a situation the type of all
// instantiations would be the same, which they aren't.
//
// This sort of subtelty comes up quite frequently for resources.
// This file contains references to `imported_resources` and
// `defined_resources` for example which refer to the formal
// nature of components and their abstract variables. Specifically
// for instantiation though we're eventually faced with the problem
// of subtype checks where resource subtyping is defined as "does
// your id equal mine". Naively implemented that means anything with
// resources isn't subtypes of anything else since resource ids are
// unique between components. Instead what actually needs to happen
// is types need to be substituted.
//
// Much of the complexity here is not actually apparent here in this
// literal one function. Instead it's spread out across validation
// in this file and type-checking in the `types.rs` module. Note that
// the "spread out" nature isn't because we're bad maintainers
// (hopefully), but rather it's quite infectious how many parts need
// to handle resources and account for defined/imported variables.
//
// For example only one subtyping method is called here where `args` is
// passed in. This method is quite recursive in its nature though and
// will internally touch all the fields that this file maintains to
// end up putting into various bits and pieces of type information.
//
// Unfortunately there's probably not really a succinct way to read
// this method and understand everything. If you've written ML module
// type systems this will probably look quite familiar, but otherwise
// the whole system is not really easily approachable at this time. It's
// hoped in the future that there's a formalism to refer to which will
// make things more clear as the code would be able to reference this
// hypothetical formalism. Until that's the case, though, these
// comments are hopefully enough when augmented with communication with
// the authors.
let component_type = types[component_type_id].as_component_type().unwrap();
let mut exports = component_type.exports.clone();
let type_size = component_type
.exports
.iter()
.fold(1, |acc, (_, ty)| acc + ty.type_size());
// Perform the subtype check that `args` matches the imports of
// `component_type_id`. The result of this subtype check is the
// production of a mapping of resource types from the imports to the
// arguments provided. This is a substitution map which is then used
// below to perform a substitution into the exports of the instance
// since the types of the exports are now in terms of whatever was
// supplied as imports.
let mut mapping = SubtypeCx::new(types, types).open_instance_type(
&args,
component_type_id,
ExternKind::Import,
offset,
)?;
// Part of the instantiation of a component is that all of its
// defined resources become "fresh" on each instantiation. This
// means that each instantiation of a component gets brand new type
// variables representing its defined resources, modeling that each
// instantiation produces distinct types. The freshening is performed
// here by allocating new ids and inserting them into `mapping`.
//
// Note that technically the `mapping` from subtyping should be applied
// first and then the mapping for freshening should be applied
// afterwards. The keys of the map from subtyping are the imported
// resources from this component which are disjoint from its defined
// resources. That means it should be possible to place everything
// into one large map which maps from:
//
// * the component's imported resources go to whatever was explicitly
// supplied in the import map
// * the component's defined resources go to fresh new resources
//
// These two remapping operations can then get folded into one by
// placing everything in the same `mapping` and using that for a remap
// only once.
let fresh_defined_resources = (0..component_type.defined_resources.len())
.map(|_| types.alloc_resource_id())
.collect::<IndexSet<_>>();
let component_type = types[component_type_id].as_component_type().unwrap();
for ((old, _path), new) in component_type
.defined_resources
.iter()
.zip(&fresh_defined_resources)
{
let prev = mapping.resources.insert(*old, *new);
assert!(prev.is_none());
}
// Perform the remapping operation over all the exports that will be
// listed for the final instance type. Note that this is performed
// both for all the export types in addition to the explicitly exported
// resources list.
//
// Note that this is a crucial step of the instantiation process which
// is intentionally transforming the type of a component based on the
// variables provided by imports and additionally ensuring that all
// references to the component's defined resources are rebound to the
// fresh ones introduced just above.
for entity in exports.values_mut() {
types.remap_component_entity(entity, &mut mapping);
}
let component_type = types[component_type_id].as_component_type().unwrap();
let explicit_resources = component_type
.explicit_resources
.iter()
.map(|(id, path)| {
(
mapping.resources.get(id).copied().unwrap_or(*id),
path.clone(),
)
})
.collect::<IndexMap<_, _>>();
// Technically in the last formalism that was consulted in writing this
// implementation there are two further steps that are part of the
// instantiation process:
//
// 1. The set of defined resources from the instance created, which are
// added to the outer component, is the subset of the instance's
// original defined resources and the free variables of the exports.
//
// 2. Each element of this subset is required to be "explicit in" the
// instance, or otherwise explicitly exported somewhere within the
// instance.
//
// With the syntactic structure of the component model, however, neither
// of these conditions should be necessary. The main reason for this is
// that this function is specifically dealing with instantiation of
// components which should already have these properties validated
// about them. Subsequently we shouldn't have to re-check them.
//
// In debug mode, however, do a sanity check.
if cfg!(debug_assertions) {
let mut free = IndexSet::new();
for ty in exports.values() {
types.free_variables_component_entity(ty, &mut free);
}
assert!(fresh_defined_resources.is_subset(&free));
for resource in fresh_defined_resources.iter() {
assert!(explicit_resources.contains_key(resource));
}
}
// And as the final step of the instantiation process all of the
// new defined resources from this component instantiation are moved
// onto `self`. Note that concrete instances never have defined
// resources (see more comments in `instantiate_exports`) so the
// `defined_resources` listing in the final type is always empty. This
// represents how by having a concrete instance the definitions
// referred to in that instance are now problems for the outer
// component rather than the inner instance since the instance is bound
// to the component.
//
// All defined resources here have no known representation, so they're
// all listed with `None`. Also note that none of the resources were
// exported yet so `self.explicit_resources` is not updated yet. If
// this instance is exported, however, it'll consult the type's
// `explicit_resources` array and use that appropriately.
for resource in fresh_defined_resources {
self.defined_resources.insert(resource, None);
}
let ty = Type::ComponentInstance(Box::new(ComponentInstanceType {
type_size,
defined_resources: Default::default(),
explicit_resources,
exports,
}));
Ok(types.push_ty(ty))
}
fn instantiate_exports(
&mut self,
exports: Vec<crate::ComponentExport>,
types: &mut TypeAlloc,
offset: usize,
) -> Result<TypeId> {
let mut type_size = 1;
let mut inst_exports = IndexMap::new();
let mut explicit_resources = IndexMap::new();
let mut kebab_names = IndexSet::new();
// NB: It's intentional that this context is empty since no indices are
// introduced in the bag-of-exports construct which means there's no
// way syntactically to register something inside of this.
let names = KebabNameContext::default();
for export in exports {
assert!(export.ty.is_none());
let ty = match export.kind {
ComponentExternalKind::Module => {
ComponentEntityType::Module(self.module_at(export.index, offset)?)
}
ComponentExternalKind::Component => {
ComponentEntityType::Component(self.component_at(export.index, offset)?)
}
ComponentExternalKind::Instance => {
let ty = self.instance_at(export.index, offset)?;
// When an instance is exported from an instance then
// all explicitly exported resources on the sub-instance are
// now also listed as exported resources on the outer
// instance, just with one more element in their path.
explicit_resources.extend(
types[ty]
.as_component_instance_type()
.unwrap()
.explicit_resources
.iter()
.map(|(id, path)| {
let mut new_path = vec![inst_exports.len()];
new_path.extend(path);
(*id, new_path)
}),
);
ComponentEntityType::Instance(ty)
}
ComponentExternalKind::Func => {
ComponentEntityType::Func(self.function_at(export.index, offset)?)
}
ComponentExternalKind::Value => {
ComponentEntityType::Value(*self.value_at(export.index, offset)?)
}
ComponentExternalKind::Type => {
let ty = self.type_at(export.index, false, offset)?;
// If this is an export of a resource type be sure to
// record that in the explicit list with the appropriate
// path because if this instance ends up getting used
// it'll count towards the "explicit in" check.
if let Type::Resource(id) = &types[ty] {
explicit_resources.insert(*id, vec![inst_exports.len()]);
}
ComponentEntityType::Type {
referenced: ty,
// The created type index here isn't used anywhere
// in index spaces because a "bag of exports"
// doesn't build up its own index spaces. Just fill
// in the same index here in this case as what's
// referenced.
created: ty,
}
}
};
names.validate_extern(
export.name.into(),
"instance export",
&ty,
types,
offset,
&mut kebab_names,
&mut inst_exports,
&mut type_size,
)?;
}
let ty = Type::ComponentInstance(Box::new(ComponentInstanceType {
type_size,
explicit_resources,
exports: inst_exports,
// NB: the list of defined resources for this instance itself
// is always empty. Even if this instance exports resources,
// it's empty.
//
// The reason for this is a bit subtle. The general idea, though, is
// that the defined resources list here is only used for instance
// types that are sort of "floating around" and haven't actually
// been attached to something yet. For example when an instance type
// is simply declared it can have defined resources introduced
// through `(export "name" (type (sub resource)))`. These
// definitions, however, are local to the instance itself and aren't
// defined elsewhere.
//
// Here, though, no new definitions were introduced. The instance
// created here is a "bag of exports" which could only refer to
// preexisting items. This means that inherently no new resources
// were created so there's nothing to put in this list. Any
// resources referenced by the instance must be bound by the outer
// component context or further above.
//
// Furthermore, however, actual instances of instances, which this
// is, aren't allowed to have defined resources. Instead the
// resources would have to be injected into the outer component
// enclosing the instance. That means that even if bag-of-exports
// could declare a new resource then the resource would be moved
// from here to `self.defined_resources`. This doesn't exist at this
// time, though, so this still remains empty and
// `self.defined_resources` remains unperturbed.
defined_resources: Default::default(),
}));
Ok(types.push_ty(ty))
}
fn instantiate_core_exports(
&mut self,
exports: Vec<crate::Export>,
types: &mut TypeAlloc,
offset: usize,
) -> Result<TypeId> {
fn insert_export(
name: &str,
export: EntityType,
exports: &mut IndexMap<String, EntityType>,
type_size: &mut u32,
offset: usize,
) -> Result<()> {
*type_size = combine_type_sizes(*type_size, export.type_size(), offset)?;
if exports.insert(name.to_string(), export).is_some() {
bail!(
offset,
"duplicate instantiation export name `{name}` already defined",
)
}
Ok(())
}
let mut type_size = 1;
let mut inst_exports = IndexMap::new();
for export in exports {
match export.kind {
ExternalKind::Func => {
insert_export(
export.name,
EntityType::Func(self.core_function_at(export.index, offset)?),
&mut inst_exports,
&mut type_size,
offset,
)?;
}
ExternalKind::Table => insert_export(
export.name,
EntityType::Table(*self.table_at(export.index, offset)?),
&mut inst_exports,
&mut type_size,
offset,
)?,
ExternalKind::Memory => insert_export(
export.name,
EntityType::Memory(*self.memory_at(export.index, offset)?),
&mut inst_exports,
&mut type_size,
offset,
)?,
ExternalKind::Global => {
insert_export(
export.name,
EntityType::Global(*self.global_at(export.index, offset)?),
&mut inst_exports,
&mut type_size,
offset,
)?;
}
ExternalKind::Tag => insert_export(
export.name,
EntityType::Tag(self.core_function_at(export.index, offset)?),
&mut inst_exports,
&mut type_size,
offset,
)?,
}
}
let ty = Type::Instance(Box::new(InstanceType {
type_size,
kind: InstanceTypeKind::Exports(inst_exports),
}));
Ok(types.push_ty(ty))
}
fn alias_core_instance_export(
&mut self,
instance_index: u32,
kind: ExternalKind,
name: &str,
types: &TypeList,
offset: usize,
) -> Result<()> {
macro_rules! push_module_export {
($expected:path, $collection:ident, $ty:literal) => {{
match self.core_instance_export(instance_index, name, types, offset)? {
$expected(ty) => {
self.$collection.push(*ty);
Ok(())
}
_ => {
bail!(
offset,
"export `{name}` for core instance {instance_index} is not a {}",
$ty
)
}
}
}};
}
match kind {
ExternalKind::Func => {
check_max(
self.function_count(),
1,
MAX_WASM_FUNCTIONS,
"functions",
offset,
)?;
push_module_export!(EntityType::Func, core_funcs, "function")
}
ExternalKind::Table => {
check_max(self.core_tables.len(), 1, MAX_WASM_TABLES, "tables", offset)?;
push_module_export!(EntityType::Table, core_tables, "table")
}
ExternalKind::Memory => {
check_max(
self.core_memories.len(),
1,
MAX_WASM_MEMORIES,
"memories",
offset,
)?;
push_module_export!(EntityType::Memory, core_memories, "memory")
}
ExternalKind::Global => {
check_max(
self.core_globals.len(),
1,
MAX_WASM_GLOBALS,
"globals",
offset,
)?;
push_module_export!(EntityType::Global, core_globals, "global")
}
ExternalKind::Tag => {
check_max(self.core_tags.len(), 1, MAX_WASM_TAGS, "tags", offset)?;
push_module_export!(EntityType::Tag, core_tags, "tag")
}
}
}
fn alias_instance_export(
&mut self,
instance_index: u32,
kind: ComponentExternalKind,
name: &str,
types: &mut TypeAlloc,
offset: usize,
) -> Result<()> {
let mut ty = match types[self.instance_at(instance_index, offset)?]
.as_component_instance_type()
.unwrap()
.exports
.get(name)
{
Some(ty) => *ty,
None => bail!(
offset,
"instance {instance_index} has no export named `{name}`"
),
};
let ok = match (&ty, kind) {
(ComponentEntityType::Module(_), ComponentExternalKind::Module) => true,
(ComponentEntityType::Module(_), _) => false,
(ComponentEntityType::Component(_), ComponentExternalKind::Component) => true,
(ComponentEntityType::Component(_), _) => false,
(ComponentEntityType::Func(_), ComponentExternalKind::Func) => true,
(ComponentEntityType::Func(_), _) => false,
(ComponentEntityType::Instance(_), ComponentExternalKind::Instance) => true,
(ComponentEntityType::Instance(_), _) => false,
(ComponentEntityType::Value(_), ComponentExternalKind::Value) => true,
(ComponentEntityType::Value(_), _) => false,
(ComponentEntityType::Type { .. }, ComponentExternalKind::Type) => true,
(ComponentEntityType::Type { .. }, _) => false,
};
if !ok {
bail!(
offset,
"export `{name}` for instance {instance_index} is not a {}",
kind.desc(),
);
}
self.add_entity(&mut ty, None, types, offset)?;
Ok(())
}
fn alias_module(components: &mut [Self], count: u32, index: u32, offset: usize) -> Result<()> {
let component = Self::check_alias_count(components, count, offset)?;
let ty = component.module_at(index, offset)?;
let current = components.last_mut().unwrap();
check_max(
current.core_modules.len(),
1,
MAX_WASM_MODULES,
"modules",
offset,
)?;
current.core_modules.push(ty);
Ok(())
}
fn alias_component(
components: &mut [Self],
count: u32,
index: u32,
offset: usize,
) -> Result<()> {
let component = Self::check_alias_count(components, count, offset)?;
let ty = component.component_at(index, offset)?;
let current = components.last_mut().unwrap();
check_max(
current.components.len(),
1,
MAX_WASM_COMPONENTS,
"components",
offset,
)?;
current.components.push(ty);
Ok(())
}
fn alias_core_type(
components: &mut [Self],
count: u32,
index: u32,
offset: usize,
) -> Result<()> {
let component = Self::check_alias_count(components, count, offset)?;
let ty = component.type_at(index, true, offset)?;
let current = components.last_mut().unwrap();
check_max(current.type_count(), 1, MAX_WASM_TYPES, "types", offset)?;
current.core_types.push(ty);
Ok(())
}
fn alias_type(
components: &mut [Self],
count: u32,
index: u32,
types: &mut TypeAlloc,
offset: usize,
) -> Result<()> {
let component = Self::check_alias_count(components, count, offset)?;
let ty = component.type_at(index, false, offset)?;
// If `count` "crossed a component boundary", meaning that it went from
// one component to another, then this must additionally verify that
// `ty` has no free variables with respect to resources. This is
// intended to preserve the property for components where each component
// is an isolated unit that can theoretically be extracted from other
// components. If resources from other components were allowed to leak
// in then it would prevent that.
//
// This check is done by calculating the `pos` within `components` that
// our target `component` above was selected at. Once this is acquired
// the component to the "right" is checked, and if that's a component
// then it's considered as crossing a component boundary meaning the
// free variables check runs.
//
// The reason this works is that in the list of `ComponentState` types
// it's guaranteed that any `is_type` components are contiguous at the
// end of the array. This means that if state one level deeper than the
// target of this alias is a `!is_type` component, then the target must
// be a component as well. If the one-level deeper state `is_type` then
// the target is either a type or a component, both of which are valid
// (as aliases can reach the enclosing component and have as many free
// variables as they want).
let pos_after_component = components.len() - (count as usize);
if let Some(component) = components.get(pos_after_component) {
if component.kind == ComponentKind::Component {
let mut free = IndexSet::new();
types.free_variables_type_id(ty, &mut free);
if !free.is_empty() {
bail!(
offset,
"cannot alias outer type which transitively refers \
to resources not defined in the current component"
);
}
}
}
let current = components.last_mut().unwrap();
check_max(current.type_count(), 1, MAX_WASM_TYPES, "types", offset)?;
current.types.push(ty);
Ok(())
}
fn check_alias_count(components: &[Self], count: u32, offset: usize) -> Result<&Self> {
let count = count as usize;
if count >= components.len() {
bail!(offset, "invalid outer alias count of {count}");
}
Ok(&components[components.len() - count - 1])
}
fn create_defined_type(
&self,
ty: crate::ComponentDefinedType,
types: &TypeList,
offset: usize,
) -> Result<ComponentDefinedType> {
match ty {
crate::ComponentDefinedType::Primitive(ty) => Ok(ComponentDefinedType::Primitive(ty)),
crate::ComponentDefinedType::Record(fields) => {
self.create_record_type(fields.as_ref(), types, offset)
}
crate::ComponentDefinedType::Variant(cases) => {
self.create_variant_type(cases.as_ref(), types, offset)
}
crate::ComponentDefinedType::List(ty) => Ok(ComponentDefinedType::List(
self.create_component_val_type(ty, types, offset)?,
)),
crate::ComponentDefinedType::Tuple(tys) => {
self.create_tuple_type(tys.as_ref(), types, offset)
}
crate::ComponentDefinedType::Flags(names) => {
self.create_flags_type(names.as_ref(), offset)
}
crate::ComponentDefinedType::Enum(cases) => {
self.create_enum_type(cases.as_ref(), offset)
}
crate::ComponentDefinedType::Union(tys) => {
self.create_union_type(tys.as_ref(), types, offset)
}
crate::ComponentDefinedType::Option(ty) => Ok(ComponentDefinedType::Option(
self.create_component_val_type(ty, types, offset)?,
)),
crate::ComponentDefinedType::Result { ok, err } => Ok(ComponentDefinedType::Result {
ok: ok
.map(|ty| self.create_component_val_type(ty, types, offset))
.transpose()?,
err: err
.map(|ty| self.create_component_val_type(ty, types, offset))
.transpose()?,
}),
crate::ComponentDefinedType::Own(idx) => Ok(ComponentDefinedType::Own(
self.resource_at(idx, types, offset)?,
)),
crate::ComponentDefinedType::Borrow(idx) => Ok(ComponentDefinedType::Borrow(
self.resource_at(idx, types, offset)?,
)),
}
}
fn create_record_type(
&self,
fields: &[(&str, crate::ComponentValType)],
types: &TypeList,
offset: usize,
) -> Result<ComponentDefinedType> {
let mut type_size = 1;
let mut field_map = IndexMap::with_capacity(fields.len());
for (name, ty) in fields {
let name = to_kebab_str(name, "record field", offset)?;
let ty = self.create_component_val_type(*ty, types, offset)?;
match field_map.entry(name.to_owned()) {
Entry::Occupied(e) => bail!(
offset,
"record field name `{name}` conflicts with previous field name `{prev}`",
prev = e.key()
),
Entry::Vacant(e) => {
type_size = combine_type_sizes(type_size, ty.type_size(), offset)?;
e.insert(ty);
}
}
}
Ok(ComponentDefinedType::Record(RecordType {
type_size,
fields: field_map,
}))
}
fn create_variant_type(
&self,
cases: &[crate::VariantCase],
types: &TypeList,
offset: usize,
) -> Result<ComponentDefinedType> {
let mut type_size = 1;
let mut case_map: IndexMap<KebabString, VariantCase> = IndexMap::with_capacity(cases.len());
if cases.is_empty() {
return Err(BinaryReaderError::new(
"variant type must have at least one case",
offset,
));
}
if cases.len() > u32::MAX as usize {
return Err(BinaryReaderError::new(
"variant type cannot be represented with a 32-bit discriminant value",
offset,
));
}
for (i, case) in cases.iter().enumerate() {
if let Some(refines) = case.refines {
if refines >= i as u32 {
return Err(BinaryReaderError::new(
"variant case can only refine a previously defined case",
offset,
));
}
}
let name = to_kebab_str(case.name, "variant case", offset)?;
let ty = case
.ty
.map(|ty| self.create_component_val_type(ty, types, offset))
.transpose()?;
match case_map.entry(name.to_owned()) {
Entry::Occupied(e) => bail!(
offset,
"variant case name `{name}` conflicts with previous case name `{prev}`",
name = case.name,
prev = e.key()
),
Entry::Vacant(e) => {
type_size = combine_type_sizes(
type_size,
ty.map(|ty| ty.type_size()).unwrap_or(1),
offset,
)?;
// Safety: the use of `KebabStr::new_unchecked` here is safe because the string
// was already verified to be kebab case.
e.insert(VariantCase {
ty,
refines: case
.refines
.map(|i| KebabStr::new_unchecked(cases[i as usize].name).to_owned()),
});
}
}
}
Ok(ComponentDefinedType::Variant(VariantType {
type_size,
cases: case_map,
}))
}
fn create_tuple_type(
&self,
tys: &[crate::ComponentValType],
types: &TypeList,
offset: usize,
) -> Result<ComponentDefinedType> {
let mut type_size = 1;
let types = tys
.iter()
.map(|ty| {
let ty = self.create_component_val_type(*ty, types, offset)?;
type_size = combine_type_sizes(type_size, ty.type_size(), offset)?;
Ok(ty)
})
.collect::<Result<_>>()?;
Ok(ComponentDefinedType::Tuple(TupleType { type_size, types }))
}
fn create_flags_type(&self, names: &[&str], offset: usize) -> Result<ComponentDefinedType> {
let mut names_set = IndexSet::with_capacity(names.len());
for name in names {
let name = to_kebab_str(name, "flag", offset)?;
if !names_set.insert(name.to_owned()) {
bail!(
offset,
"flag name `{name}` conflicts with previous flag name `{prev}`",
prev = names_set.get(name).unwrap()
);
}
}
Ok(ComponentDefinedType::Flags(names_set))
}
fn create_enum_type(&self, cases: &[&str], offset: usize) -> Result<ComponentDefinedType> {
if cases.len() > u32::MAX as usize {
return Err(BinaryReaderError::new(
"enumeration type cannot be represented with a 32-bit discriminant value",
offset,
));
}
let mut tags = IndexSet::with_capacity(cases.len());
for tag in cases {
let tag = to_kebab_str(tag, "enum tag", offset)?;
if !tags.insert(tag.to_owned()) {
bail!(
offset,
"enum tag name `{tag}` conflicts with previous tag name `{prev}`",
prev = tags.get(tag).unwrap()
);
}
}
Ok(ComponentDefinedType::Enum(tags))
}
fn create_union_type(
&self,
tys: &[crate::ComponentValType],
types: &TypeList,
offset: usize,
) -> Result<ComponentDefinedType> {
let mut type_size = 1;
let types = tys
.iter()
.map(|ty| {
let ty = self.create_component_val_type(*ty, types, offset)?;
type_size = combine_type_sizes(type_size, ty.type_size(), offset)?;
Ok(ty)
})
.collect::<Result<_>>()?;
Ok(ComponentDefinedType::Union(UnionType { type_size, types }))
}
fn create_component_val_type(
&self,
ty: crate::ComponentValType,
types: &TypeList,
offset: usize,
) -> Result<ComponentValType> {
Ok(match ty {
crate::ComponentValType::Primitive(pt) => ComponentValType::Primitive(pt),
crate::ComponentValType::Type(idx) => {
ComponentValType::Type(self.defined_type_at(idx, types, offset)?)
}
})
}
pub fn type_at(&self, idx: u32, core: bool, offset: usize) -> Result<TypeId> {
let types = if core { &self.core_types } else { &self.types };
types
.get(idx as usize)
.copied()
.ok_or_else(|| format_err!(offset, "unknown type {idx}: type index out of bounds"))
}
fn function_type_at<'a>(
&self,
idx: u32,
types: &'a TypeList,
offset: usize,
) -> Result<&'a ComponentFuncType> {
types[self.type_at(idx, false, offset)?]
.as_component_func_type()
.ok_or_else(|| format_err!(offset, "type index {idx} is not a function type"))
}
fn function_at(&self, idx: u32, offset: usize) -> Result<TypeId> {
self.funcs.get(idx as usize).copied().ok_or_else(|| {
format_err!(
offset,
"unknown function {idx}: function index out of bounds"
)
})
}
fn component_at(&self, idx: u32, offset: usize) -> Result<TypeId> {
self.components.get(idx as usize).copied().ok_or_else(|| {
format_err!(
offset,
"unknown component {idx}: component index out of bounds"
)
})
}
fn instance_at(&self, idx: u32, offset: usize) -> Result<TypeId> {
self.instances.get(idx as usize).copied().ok_or_else(|| {
format_err!(
offset,
"unknown instance {idx}: instance index out of bounds"
)
})
}
fn value_at(&mut self, idx: u32, offset: usize) -> Result<&ComponentValType> {
match self.values.get_mut(idx as usize) {
Some((ty, used)) if !*used => {
*used = true;
Ok(ty)
}
Some(_) => bail!(offset, "value {idx} cannot be used more than once"),
None => bail!(offset, "unknown value {idx}: value index out of bounds"),
}
}
fn defined_type_at(&self, idx: u32, types: &TypeList, offset: usize) -> Result<TypeId> {
let id = self.type_at(idx, false, offset)?;
match &types[id] {
Type::Defined(_) => Ok(id),
_ => bail!(offset, "type index {} is not a defined type", idx),
}
}
fn core_function_at(&self, idx: u32, offset: usize) -> Result<TypeId> {
match self.core_funcs.get(idx as usize) {
Some(id) => Ok(*id),
None => bail!(
offset,
"unknown core function {idx}: function index out of bounds"
),
}
}
fn module_at(&self, idx: u32, offset: usize) -> Result<TypeId> {
match self.core_modules.get(idx as usize) {
Some(id) => Ok(*id),
None => bail!(offset, "unknown module {idx}: module index out of bounds"),
}
}
fn core_instance_at(&self, idx: u32, offset: usize) -> Result<TypeId> {
match self.core_instances.get(idx as usize) {
Some(id) => Ok(*id),
None => bail!(
offset,
"unknown core instance {idx}: instance index out of bounds"
),
}
}
fn core_instance_export<'a>(
&self,
instance_index: u32,
name: &str,
types: &'a TypeList,
offset: usize,
) -> Result<&'a EntityType> {
match types[self.core_instance_at(instance_index, offset)?]
.as_instance_type()
.unwrap()
.internal_exports(types)
.get(name)
{
Some(export) => Ok(export),
None => bail!(
offset,
"core instance {instance_index} has no export named `{name}`"
),
}
}
fn global_at(&self, idx: u32, offset: usize) -> Result<&GlobalType> {
match self.core_globals.get(idx as usize) {
Some(t) => Ok(t),
None => bail!(offset, "unknown global {idx}: global index out of bounds"),
}
}
fn table_at(&self, idx: u32, offset: usize) -> Result<&TableType> {
match self.core_tables.get(idx as usize) {
Some(t) => Ok(t),
None => bail!(offset, "unknown table {idx}: table index out of bounds"),
}
}
fn memory_at(&self, idx: u32, offset: usize) -> Result<&MemoryType> {
match self.core_memories.get(idx as usize) {
Some(t) => Ok(t),
None => bail!(offset, "unknown memory {idx}: memory index out of bounds"),
}
}
/// Completes the translation of this component, performing final
/// validation of its structure.
///
/// This method is required to be called for translating all components.
/// Internally this will convert local data structures into a
/// `ComponentType` which is suitable to use to describe the type of this
/// component.
pub fn finish(&mut self, types: &TypeAlloc, offset: usize) -> Result<ComponentType> {
let mut ty = ComponentType {
// Inherit some fields based on translation of the component.
type_size: self.type_size,
imports: self.imports.clone(),
exports: self.exports.clone(),
// This is filled in as a subset of `self.defined_resources`
// depending on what's actually used by the exports. See the
// bottom of this function.
defined_resources: Default::default(),
// These are inherited directly from what was calculated for this
// component.
imported_resources: mem::take(&mut self.imported_resources)
.into_iter()
.collect(),
explicit_resources: mem::take(&mut self.explicit_resources),
};
// Collect all "free variables", or resources, from the imports of this
// component. None of the resources defined within this component can
// be used as part of the exports. This set is then used to reject any
// of `self.defined_resources` which show up.
let mut free = IndexSet::default();
for ty in ty.imports.values() {
types.free_variables_component_entity(ty, &mut free);
}
for (resource, _path) in self.defined_resources.iter() {
// FIXME: this error message is quite opaque and doesn't indicate
// more contextual information such as:
//
// * what was the exported resource found in the imports
// * which import was the resource found within
//
// These are possible to calculate here if necessary, however.
if free.contains(resource) {
bail!(offset, "local resource type found in imports");
}
}
// The next step in validation a component, with respect to resources,
// is to minimize the set of defined resources to only those that
// are actually used by the exports. This weeds out resources that are
// defined, used within a component, and never exported, for example.
//
// The free variables of all exports are inserted into the `free` set
// (which is reused from the imports after clearing it). The defined
// resources calculated for this component are then inserted into this
// type's list of defined resources if it's contained somewhere in
// the free variables.
//
// Note that at the same time all defined resources must be exported,
// somehow, transitively from this component. The `explicit_resources`
// map is consulted for this purpose which lists all explicitly
// exported resources in the component, regardless from whence they
// came. If not present in this map then it's not exported and an error
// is returned.
//
// NB: the "types are exported" check is probably sufficient nowadays
// that the check of the `explicit_resources` map is probably not
// necessary, but it's left here for completeness and out of an
// abundance of caution.
free.clear();
for ty in ty.exports.values() {
types.free_variables_component_entity(ty, &mut free);
}
for (id, _rep) in mem::take(&mut self.defined_resources) {
if !free.contains(&id) {
continue;
}
let path = match ty.explicit_resources.get(&id).cloned() {
Some(path) => path,
// FIXME: this error message is quite opaque and doesn't
// indicate more contextual information such as:
//
// * which resource wasn't found in an export
// * which export has a reference to the resource
//
// These are possible to calculate here if necessary, however.
None => bail!(
offset,
"local resource type found in export but not exported itself"
),
};
ty.defined_resources.push((id, path));
}
Ok(ty)
}
}
impl KebabNameContext {
/// Registers that the resource `id` is named `name` within this context.
fn register(&mut self, name: &str, id: TypeId) {
let idx = self.all_resource_names.len();
let prev = self.resource_name_map.insert(id, idx);
assert!(prev.is_none());
self.all_resource_names.insert(name.to_string());
}
fn validate_extern(
&self,
name: ComponentExternName<'_>,
desc: &str,
ty: &ComponentEntityType,
types: &TypeAlloc,
offset: usize,
kebab_names: &mut IndexSet<KebabName>,
items: &mut IndexMap<String, ComponentEntityType>,
type_size: &mut u32,
) -> Result<()> {
// First validate that `name` is even a valid kebab name, meaning it's
// in kebab-case, is an ID, etc.
let kebab = KebabName::new(name, offset).with_context(|| {
format!("{desc} name `{}` is not a valid extern name", name.as_str())
})?;
// Validate that the kebab name, if it has structure such as
// `[method]a.b`, is indeed valid with respect to known resources.
self.validate(&kebab, ty, types, offset)
.with_context(|| format!("{desc} name `{kebab}` is not valid"))?;
// Top-level kebab-names must all be unique, even between both imports
// and exports ot a component. For those names consult the `kebab_names`
// set.
if let ComponentExternName::Kebab(_) = name {
if let Some(prev) = kebab_names.replace(kebab.clone()) {
bail!(
offset,
"{desc} name `{kebab}` conflicts with previous name `{prev}`",
);
}
}
// Otherwise all strings must be unique, regardless of their name, so
// consult the `items` set to ensure that we're not for example
// importing the same interface ID twice.
match items.entry(kebab.into()) {
Entry::Occupied(e) => {
bail!(
offset,
"{desc} name `{name}` conflicts with previous name `{prev}`",
name = name.as_str(),
prev = e.key(),
);
}
Entry::Vacant(e) => {
e.insert(*ty);
*type_size = combine_type_sizes(*type_size, ty.type_size(), offset)?;
}
}
Ok(())
}
/// Validates that the `name` provided is allowed to have the type `ty`.
fn validate(
&self,
name: &KebabName,
ty: &ComponentEntityType,
types: &TypeAlloc,
offset: usize,
) -> Result<()> {
let func = || {
let id = match ty {
ComponentEntityType::Func(id) => *id,
_ => bail!(offset, "item is not a func"),
};
Ok(types[id].as_component_func_type().unwrap())
};
match name.kind() {
// Normal kebab name or id? No validation necessary.
KebabNameKind::Normal(_) | KebabNameKind::Id { .. } => {}
// Constructors must return `(own $resource)` and the `$resource`
// must be named within this context to match `rname`
KebabNameKind::Constructor(rname) => {
let ty = func()?;
if ty.results.len() != 1 {
bail!(offset, "function should return one value");
}
let ty = ty.results[0].1;
let resource = match ty {
ComponentValType::Primitive(_) => None,
ComponentValType::Type(ty) => match &types[ty] {
Type::Defined(ComponentDefinedType::Own(id)) => Some(id),
_ => None,
},
};
let resource = match resource {
Some(id) => id,
None => bail!(offset, "function should return `(own $T)`"),
};
self.validate_resource_name(*resource, rname, offset)?;
}
// Methods must take `(param "self" (borrow $resource))` as the
// first argument where `$resources` matches the name `resource` as
// named in this context.
KebabNameKind::Method { resource, .. } => {
let ty = func()?;
if ty.params.len() == 0 {
bail!(offset, "function should have at least one argument");
}
let (pname, pty) = &ty.params[0];
if pname.as_str() != "self" {
bail!(
offset,
"function should have a first argument called `self`",
);
}
let id = match pty {
ComponentValType::Primitive(_) => None,
ComponentValType::Type(ty) => match &types[*ty] {
Type::Defined(ComponentDefinedType::Borrow(id)) => Some(id),
_ => None,
},
};
let id = match id {
Some(id) => id,
None => bail!(
offset,
"function should take a first argument of `(borrow $T)`"
),
};
self.validate_resource_name(*id, resource, offset)?;
}
// Static methods don't have much validation beyond that they must
// be a function and the resource name referred to must already be
// in this context.
KebabNameKind::Static { resource, .. } => {
func()?;
if !self.all_resource_names.contains(resource.as_str()) {
bail!(offset, "static resource name is not known in this context");
}
}
}
Ok(())
}
fn validate_resource_name(&self, id: TypeId, name: &KebabStr, offset: usize) -> Result<()> {
let expected_name_idx = match self.resource_name_map.get(&id) {
Some(idx) => *idx,
None => {
bail!(
offset,
"resource used in function does not have a name in this context"
)
}
};
let expected_name = &self.all_resource_names[expected_name_idx];
if name.as_str() != expected_name {
bail!(
offset,
"function does not match expected \
resource name `{expected_name}`"
);
}
Ok(())
}
}
use self::append_only::*;
mod append_only {
use indexmap::IndexMap;
use std::hash::Hash;
use std::ops::Deref;
pub struct IndexMapAppendOnly<K, V>(IndexMap<K, V>);
impl<K, V> IndexMapAppendOnly<K, V>
where
K: Hash + Eq + PartialEq,
{
pub fn insert(&mut self, key: K, value: V) {
let prev = self.0.insert(key, value);
assert!(prev.is_none());
}
}
impl<K, V> Deref for IndexMapAppendOnly<K, V> {
type Target = IndexMap<K, V>;
fn deref(&self) -> &IndexMap<K, V> {
&self.0
}
}
impl<K, V> Default for IndexMapAppendOnly<K, V> {
fn default() -> Self {
Self(Default::default())
}
}
impl<K, V> IntoIterator for IndexMapAppendOnly<K, V> {
type IntoIter = <IndexMap<K, V> as IntoIterator>::IntoIter;
type Item = <IndexMap<K, V> as IntoIterator>::Item;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
}