1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
use std::collections::{hash_map, BTreeMap};
#[allow(unused)]
use lz4_flex::{
self, block, compress_prepend_size, decompress, decompress_into, decompress_size_prepended,
};
use crate::os::task::process::MemorySnapshotRegion;
use super::*;
/// This value is tweaked to minimize the amount of journal
/// entries for a nominal workload but keep the resolution
/// high enough that it reduces overhead and inefficiency.
///
/// The test case used to tune this value was a HTTP server
/// serving a HTTP web page on hyper compiled to WASM. The
/// server was first warmed up with a bunch of requests then
/// the journal entries measured on subsequent requests, these
/// are the values
///
/// Resolution | Journal Size | Memory Overhead
/// -----------|--------------|----------------
/// 128 bytes | 3584 bytes | 12.5%
/// 256 bytes | 4096 bytes | 6.25%
/// 512 bytes | 7680 bytes | 3.12%
/// 1024 bytes | 12288 bytes | 1.56%
/// 2048 bytes | 22528 bytes | 0.78%
/// 4096 bytes | 32769 bytes | 0.39%
///
/// Based on this data we have settled on 512 byte memory resolution
/// for region extents which keeps the journal size to a reasonable
/// value and the memory overhead of the hash table within an acceptable
/// limit
const MEMORY_REGION_RESOLUTION: u64 = 512;
impl JournalEffector {
pub fn save_memory_and_snapshot(
ctx: &mut FunctionEnvMut<'_, WasiEnv>,
guard: &mut MutexGuard<'_, WasiProcessInner>,
trigger: SnapshotTrigger,
) -> anyhow::Result<()> {
let env = ctx.data();
let memory = unsafe { env.memory_view(ctx) };
// Compute all the regions that we need to save which is basically
// everything in the memory except for the memory stacks.
//
// We do not want the regions to be greater than 64KB as this will
// otherwise create too much inefficiency. We choose 64KB as its
// aligned with the standard WASM page size.
let mut cur = 0u64;
let mut regions = Vec::<MemorySnapshotRegion>::new();
while cur < memory.data_size() {
//let mut again = false;
let next = ((cur + MEMORY_REGION_RESOLUTION) / MEMORY_REGION_RESOLUTION)
* MEMORY_REGION_RESOLUTION;
let end = memory.data_size().min(next);
/*
for (_, thread) in guard.threads.iter() {
let layout = thread.memory_layout();
if cur >= layout.stack_lower && cur < layout.stack_upper {
cur = layout.stack_upper;
again = true;
break;
}
if end > layout.stack_lower && end < layout.stack_upper {
end = end.min(layout.stack_lower);
}
}
if again {
continue;
}
*/
let region = cur..end;
regions.push(region.into());
cur = end;
}
// Next we examine the dirty page manager and filter out any pages
// that have not been explicitly written to (according to the
// PTE)
//
// # TODO
// https://docs.kernel.org/admin-guide/mm/soft-dirty.html
// Now that we know all the regions that need to be saved we
// enter a processing loop that dumps all the data to the log
// file in an orderly manner.
let memory = unsafe { env.memory_view(ctx) };
let journal = ctx.data().active_journal()?;
let mut regions_phase2 = BTreeMap::new();
for region in regions.drain(..) {
// We grab this region of memory as a vector and hash
// it, which allows us to make some logging efficiency
// gains.
#[cfg(not(feature = "sys"))]
let data = memory
.copy_range_to_vec(region.into())
.map_err(mem_error_to_wasi)?;
// For x86 implementations running natively we have a
// performance optimization that avoids a copy of the
// memory when hashing for changed regions
#[cfg(feature = "sys")]
let data = {
let d = unsafe { memory.data_unchecked() };
if region.end > d.len() as u64 {
return Err(anyhow::anyhow!(
"memory access out of bounds ({} vs {})",
region.end,
d.len()
));
}
&d[region.start as usize..region.end as usize]
};
// Compute a checksum and skip the memory if its already
// been saved to the journal once already
let hash = {
let h: [u8; 32] = blake3::hash(data).into();
u64::from_be_bytes([h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7]])
};
match guard.snapshot_memory_hash.entry(region) {
hash_map::Entry::Occupied(mut val) => {
if *val.get() == hash {
continue;
}
val.insert(hash);
}
hash_map::Entry::Vacant(vacant) => {
vacant.insert(hash);
}
}
regions_phase2.insert(region, ());
}
// Combine regions together that are next to each other
regions.clear();
let mut last_end = None;
for (region, _) in regions_phase2.iter() {
if Some(region.start) == last_end {
regions.last_mut().unwrap().end = region.end;
} else {
regions.push(*region);
}
last_end = Some(region.end);
}
// Perform the writes
for region in regions {
// We grab this region of memory as a vector and hash
// it, which allows us to make some logging efficiency
// gains.
#[cfg(not(feature = "sys"))]
let compressed_data = compress_prepend_size(
&memory
.copy_range_to_vec(region.into())
.map_err(mem_error_to_wasi)?,
);
// UNSAFE:
//
// This is only unsafe while the WASM process itself is running and using this
// method avoids a memory copy before its compressed, this also signficantly
// reduces the memory process
#[cfg(feature = "sys")]
let compressed_data = compress_prepend_size(unsafe {
&memory.data_unchecked()[region.start as usize..region.end as usize]
});
// Now we write it to the snap snapshot capturer
journal
.write(JournalEntry::UpdateMemoryRegionV1 {
region: region.into(),
compressed_data: compressed_data.into(),
})
.map_err(map_snapshot_err)?;
}
// Finally we mark the end of the snapshot so that
// it can act as a restoration point
let when = SystemTime::now();
journal
.write(JournalEntry::SnapshotV1 { when, trigger })
.map_err(map_snapshot_err)?;
// When writing snapshots we also flush the journal so that
// its guaranteed to be on the disk or network pipe
journal.flush().map_err(map_snapshot_err)?;
Ok(())
}
/// # Safety
///
/// This function manipulates the memory of the process and thus must be executed
/// by the WASM process thread itself.
///
pub unsafe fn apply_compressed_memory(
ctx: &mut FunctionEnvMut<'_, WasiEnv>,
region: Range<u64>,
compressed_data: &[u8],
) -> anyhow::Result<()> {
let (env, mut store) = ctx.data_and_store_mut();
let (uncompressed_size, compressed_data) = block::uncompressed_size(compressed_data)
.map_err(|err| anyhow::anyhow!("failed to decompress - {}", err))?;
let memory = unsafe { env.memory() };
memory.grow_at_least(&mut store, region.end + uncompressed_size as u64)?;
// Write the data to the memory
let memory = unsafe { env.memory_view(&store) };
#[cfg(not(feature = "sys"))]
{
let decompressed_data = decompress(compressed_data, uncompressed_size)?;
memory
.write(region.start, &decompressed_data)
.map_err(|err| WasiRuntimeError::Runtime(RuntimeError::user(err.into())))?;
// Break the region down into chunks that align with the resolution
let mut decompressed_data = &decompressed_data[..];
let mut offset = region.start;
while offset < region.end {
let next = region.end.min(offset + MEMORY_REGION_RESOLUTION);
let region = offset..next;
offset = next;
// Compute the hash and update it
let size = region.end - region.start;
let hash = {
let h: [u8; 32] = blake3::hash(&decompressed_data[..size as usize]).into();
u64::from_be_bytes([h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7]])
};
env.process
.inner
.0
.lock()
.unwrap()
.snapshot_memory_hash
.insert(region.into(), hash);
// Shift the data pointer
decompressed_data = &decompressed_data[size as usize..];
}
}
#[cfg(feature = "sys")]
unsafe {
let start = region.start as usize;
let end = start + uncompressed_size;
decompress_into(
compressed_data,
&mut memory.data_unchecked_mut()[start..end],
)?;
// Break the region down into chunks that align with the resolution
let data = &memory.data_unchecked();
let mut offset = region.start;
while offset < region.end {
let next = region.end.min(offset + MEMORY_REGION_RESOLUTION);
let region = offset..next;
// Compute the hash and update it
let hash = {
let h: [u8; 32] = blake3::hash(&data[offset as usize..next as usize]).into();
u64::from_be_bytes([h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7]])
};
env.process
.inner
.0
.lock()
.unwrap()
.snapshot_memory_hash
.insert(region.into(), hash);
offset = next;
}
}
Ok(())
}
}