1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
use super::*;
use crate::{
capture_store_snapshot,
os::task::OwnedTaskStatus,
runtime::task_manager::{TaskWasm, TaskWasmRunProperties},
syscalls::*,
WasiThreadHandle,
};
use serde::{Deserialize, Serialize};
use wasmer::Memory;
#[derive(Serialize, Deserialize)]
pub(crate) struct ForkResult {
pub pid: Pid,
pub ret: Errno,
}
/// ### `proc_fork()`
/// Forks the current process into a new subprocess. If the function
/// returns a zero then its the new subprocess. If it returns a positive
/// number then its the current process and the $pid represents the child.
#[instrument(level = "trace", skip_all, fields(pid = ctx.data().process.pid().raw()), ret)]
pub fn proc_fork<M: MemorySize>(
mut ctx: FunctionEnvMut<'_, WasiEnv>,
mut copy_memory: Bool,
pid_ptr: WasmPtr<Pid, M>,
) -> Result<Errno, WasiError> {
wasi_try_ok!(WasiEnv::process_signals_and_exit(&mut ctx)?);
// If we were just restored then we need to return the value instead
if let Some(result) = unsafe { handle_rewind::<M, ForkResult>(&mut ctx) } {
if result.pid == 0 {
trace!("handle_rewind - i am child (ret={})", result.ret);
} else {
trace!(
"handle_rewind - i am parent (child={}, ret={})",
result.pid,
result.ret
);
}
let memory = unsafe { ctx.data().memory_view(&ctx) };
wasi_try_mem_ok!(pid_ptr.write(&memory, result.pid));
return Ok(result.ret);
}
trace!(%copy_memory, "capturing");
// Fork the environment which will copy all the open file handlers
// and associate a new context but otherwise shares things like the
// file system interface. The handle to the forked process is stored
// in the parent process context
let (mut child_env, mut child_handle) = match ctx.data().fork() {
Ok(p) => p,
Err(err) => {
debug!("could not fork process: {err}");
// TODO: evaluate the appropriate error code, document it in the spec.
return Ok(Errno::Perm);
}
};
let child_pid = child_env.process.pid();
let child_finished = child_env.process.finished.clone();
// We write a zero to the PID before we capture the stack
// so that this is what will be returned to the child
{
let mut inner = ctx.data().process.lock();
inner.children.push(child_env.process.clone());
}
let env = ctx.data();
let memory = unsafe { env.memory_view(&ctx) };
// Setup some properties in the child environment
wasi_try_mem_ok!(pid_ptr.write(&memory, 0));
let pid = child_env.pid();
let tid = child_env.tid();
// Pass some offsets to the unwind function
let pid_offset = pid_ptr.offset();
// If we are not copying the memory then we act like a `vfork`
// instead which will pretend to be the new process for a period
// of time until `proc_exec` is called at which point the fork
// actually occurs
if copy_memory == Bool::False {
// Perform the unwind action
return unwind::<M, _>(ctx, move |mut ctx, mut memory_stack, rewind_stack| {
// Grab all the globals and serialize them
let store_data = crate::utils::store::capture_store_snapshot(&mut ctx.as_store_mut())
.serialize()
.unwrap();
let store_data = Bytes::from(store_data);
// We first fork the environment and replace the current environment
// so that the process can continue to prepare for the real fork as
// if it had actually forked
child_env.swap_inner(ctx.data_mut());
std::mem::swap(ctx.data_mut(), &mut child_env);
ctx.data_mut().vfork.replace(WasiVFork {
rewind_stack: rewind_stack.clone(),
memory_stack: memory_stack.clone(),
store_data: store_data.clone(),
env: Box::new(child_env),
handle: child_handle,
});
// Carry on as if the fork had taken place (which basically means
// it prevents to be the new process with the old one suspended)
// Rewind the stack and carry on
match rewind::<M, _>(
ctx,
memory_stack.freeze(),
rewind_stack.freeze(),
store_data,
ForkResult {
pid: 0,
ret: Errno::Success,
},
) {
Errno::Success => OnCalledAction::InvokeAgain,
err => {
warn!("failed - could not rewind the stack - errno={}", err);
OnCalledAction::Trap(Box::new(WasiError::Exit(err.into())))
}
}
});
}
// Create the thread that will back this forked process
let state = env.state.clone();
let bin_factory = env.bin_factory.clone();
// Perform the unwind action
let snapshot = capture_store_snapshot(&mut ctx.as_store_mut());
unwind::<M, _>(ctx, move |mut ctx, mut memory_stack, rewind_stack| {
let tasks = ctx.data().tasks().clone();
let span = debug_span!(
"unwind",
memory_stack_len = memory_stack.len(),
rewind_stack_len = rewind_stack.len()
);
let _span_guard = span.enter();
let memory_stack = memory_stack.freeze();
let rewind_stack = rewind_stack.freeze();
// Grab all the globals and serialize them
let store_data = snapshot.serialize().unwrap();
let store_data = Bytes::from(store_data);
// Now we use the environment and memory references
let runtime = child_env.runtime.clone();
let tasks = child_env.tasks().clone();
let child_memory_stack = memory_stack.clone();
let child_rewind_stack = rewind_stack.clone();
let module = unsafe { ctx.data().inner() }.module_clone();
let memory = unsafe { ctx.data().inner() }.memory_clone();
let spawn_type = SpawnMemoryType::CopyMemory(memory, ctx.as_store_ref());
// Spawn a new process with this current execution environment
let signaler = Box::new(child_env.process.clone());
{
let runtime = runtime.clone();
let tasks = tasks.clone();
let tasks_outer = tasks.clone();
let store_data = store_data.clone();
let run = move |mut props: TaskWasmRunProperties| {
let ctx = props.ctx;
let mut store = props.store;
// Rewind the stack and carry on
{
trace!("rewinding child");
let mut ctx = ctx.env.clone().into_mut(&mut store);
let (data, mut store) = ctx.data_and_store_mut();
match rewind::<M, _>(
ctx,
child_memory_stack,
child_rewind_stack,
store_data.clone(),
ForkResult {
pid: 0,
ret: Errno::Success,
},
) {
Errno::Success => OnCalledAction::InvokeAgain,
err => {
warn!(
"wasm rewind failed - could not rewind the stack - errno={}",
err
);
return;
}
};
}
// Invoke the start function
run::<M>(ctx, store, child_handle, None);
};
tasks_outer
.task_wasm(
TaskWasm::new(Box::new(run), child_env, module, false)
.with_globals(&snapshot)
.with_memory(spawn_type),
)
.map_err(|err| {
warn!(
"failed to fork as the process could not be spawned - {}",
err
);
err
})
.ok();
};
// Rewind the stack and carry on
match rewind::<M, _>(
ctx,
memory_stack,
rewind_stack,
store_data,
ForkResult {
pid: child_pid.raw() as Pid,
ret: Errno::Success,
},
) {
Errno::Success => OnCalledAction::InvokeAgain,
err => {
warn!("failed - could not rewind the stack - errno={}", err);
OnCalledAction::Trap(Box::new(WasiError::Exit(err.into())))
}
}
})
}
fn run<M: MemorySize>(
ctx: WasiFunctionEnv,
mut store: Store,
child_handle: WasiThreadHandle,
rewind_state: Option<(RewindState, RewindResultType)>,
) -> ExitCode {
let env = ctx.data(&store);
let tasks = env.tasks().clone();
let pid = env.pid();
let tid = env.tid();
// If we need to rewind then do so
if let Some((rewind_state, rewind_result)) = rewind_state {
let mut ctx = ctx.env.clone().into_mut(&mut store);
let res = rewind_ext::<M>(
&mut ctx,
Some(rewind_state.memory_stack),
rewind_state.rewind_stack,
rewind_state.store_data,
rewind_result,
);
if res != Errno::Success {
return res.into();
}
}
let mut ret: ExitCode = Errno::Success.into();
let err = if ctx.data(&store).thread.is_main() {
trace!(%pid, %tid, "re-invoking main");
let start = unsafe { ctx.data(&store).inner() }.start.clone().unwrap();
start.call(&mut store)
} else {
trace!(%pid, %tid, "re-invoking thread_spawn");
let start = unsafe { ctx.data(&store).inner() }
.thread_spawn
.clone()
.unwrap();
start.call(&mut store, 0, 0)
};
if let Err(err) = err {
match err.downcast::<WasiError>() {
Ok(WasiError::Exit(exit_code)) => {
ret = exit_code;
}
Ok(WasiError::DeepSleep(deep)) => {
trace!(%pid, %tid, "entered a deep sleep");
// Create the respawn function
let respawn = {
let tasks = tasks.clone();
let rewind_state = deep.rewind;
move |ctx, store, rewind_result| {
run::<M>(
ctx,
store,
child_handle,
Some((
rewind_state,
RewindResultType::RewindWithResult(rewind_result),
)),
);
}
};
/// Spawns the WASM process after a trigger
unsafe {
tasks.resume_wasm_after_poller(Box::new(respawn), ctx, store, deep.trigger)
};
return Errno::Success.into();
}
_ => {}
}
}
trace!(%pid, %tid, "child exited (code = {})", ret);
// Clean up the environment and return the result
ctx.on_exit((&mut store), Some(ret));
// We drop the handle at the last moment which will close the thread
drop(child_handle);
ret
}