1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
use std::f32::consts::E;

use super::*;
#[cfg(feature = "journal")]
use crate::journal::JournalEffector;
use crate::{
    capture_store_snapshot,
    os::task::thread::WasiMemoryLayout,
    runtime::{
        task_manager::{TaskWasm, TaskWasmRunProperties},
        TaintReason,
    },
    syscalls::*,
    WasiThreadHandle,
};

use wasmer::Memory;
use wasmer_wasix_types::wasi::ThreadStart;

/// ### `thread_spawn()`
/// Creates a new thread by spawning that shares the same
/// memory address space, file handles and main event loops.
///
/// ## Parameters
///
/// * `start_ptr` - Pointer to the structure that describes the thread to be launched
/// * `ret_tid` - ID of the thread that was launched
///
/// ## Return
///
/// Returns the thread index of the newly created thread
/// (indices always start from the same value as `pid` and increments in steps)
#[instrument(level = "trace", skip_all, ret)]
pub fn thread_spawn_v2<M: MemorySize>(
    mut ctx: FunctionEnvMut<'_, WasiEnv>,
    start_ptr: WasmPtr<ThreadStart<M>, M>,
    ret_tid: WasmPtr<Tid, M>,
) -> Errno {
    // Create the thread
    let tid = wasi_try!(thread_spawn_internal_from_wasi(&mut ctx, start_ptr));

    // Success
    let memory = unsafe { ctx.data().memory_view(&ctx) };
    wasi_try_mem!(ret_tid.write(&memory, tid));

    tracing::debug!(
        tid,
        from_tid = ctx.data().thread.id().raw(),
        "spawned new thread"
    );

    Errno::Success
}

pub fn thread_spawn_internal_from_wasi<M: MemorySize>(
    ctx: &mut FunctionEnvMut<'_, WasiEnv>,
    start_ptr: WasmPtr<ThreadStart<M>, M>,
) -> Result<Tid, Errno> {
    // Now we use the environment and memory references
    let env = ctx.data();
    let memory = unsafe { env.memory_view(&ctx) };
    let runtime = env.runtime.clone();
    let tasks = env.tasks().clone();
    let start_ptr_offset = start_ptr.offset();

    // Read the properties about the stack which we will use for asyncify
    let layout = {
        let start: ThreadStart<M> = start_ptr.read(&memory).map_err(mem_error_to_wasi)?;
        let stack_upper: u64 = start.stack_upper.into();
        let stack_size: u64 = start.stack_size.into();
        let guard_size: u64 = start.guard_size.into();
        let tls_base: u64 = start.tls_base.into();
        let stack_lower = stack_upper - stack_size;

        WasiMemoryLayout {
            stack_upper,
            stack_lower,
            guard_size,
            stack_size,
        }
    };
    tracing::trace!(
        from_tid = env.thread.id().raw(),
        "thread_spawn with layout {:?}",
        layout
    );

    // Create the handle that represents this thread
    let thread_start = ThreadStartType::ThreadSpawn {
        start_ptr: start_ptr_offset.into(),
    };
    let mut thread_handle = match env.process.new_thread(layout.clone(), thread_start) {
        Ok(h) => Arc::new(h),
        Err(err) => {
            error!(
                stack_base = layout.stack_lower,
                "failed to create thread handle",
            );
            // TODO: evaluate the appropriate error code, document it in the spec.
            return Err(Errno::Access);
        }
    };
    let thread_id: Tid = thread_handle.id().into();
    Span::current().record("tid", thread_id);

    // Spawn the thread
    thread_spawn_internal_using_layout::<M>(ctx, thread_handle, layout, start_ptr_offset, None)?;

    // Success
    Ok(thread_id)
}

pub fn thread_spawn_internal_using_layout<M: MemorySize>(
    ctx: &mut FunctionEnvMut<'_, WasiEnv>,
    thread_handle: Arc<WasiThreadHandle>,
    layout: WasiMemoryLayout,
    start_ptr_offset: M::Offset,
    rewind_state: Option<(RewindState, RewindResultType)>,
) -> Result<(), Errno> {
    // We extract the memory which will be passed to the thread
    let env = ctx.data();
    let tasks = env.tasks().clone();
    let thread_memory = unsafe { env.inner() }.memory_clone();

    // We capture some local variables
    let state = env.state.clone();
    let mut thread_env = env.clone();
    thread_env.thread = thread_handle.as_thread();
    thread_env.layout = layout;

    // TODO: Currently asynchronous threading does not work with multi
    //       threading in JS but it does work for the main thread. This will
    //       require more work to find out why.
    thread_env.enable_deep_sleep = if cfg!(feature = "js") {
        false
    } else {
        unsafe { env.capable_of_deep_sleep() }
    };

    // This next function gets a context for the local thread and then
    // calls into the process
    let mut execute_module = {
        let thread_handle = thread_handle;
        move |ctx: WasiFunctionEnv, mut store: Store| {
            // Call the thread
            call_module::<M>(ctx, store, start_ptr_offset, thread_handle, rewind_state)
        }
    };

    // If the process does not export a thread spawn function then obviously
    // we can't spawn a background thread
    if unsafe { env.inner() }.thread_spawn.is_none() {
        warn!("thread failed - the program does not export a `wasi_thread_start` function");
        return Err(Errno::Notcapable);
    }
    let thread_module = unsafe { env.inner() }.module_clone();
    let globals = capture_store_snapshot(&mut ctx.as_store_mut());
    let spawn_type =
        crate::runtime::SpawnMemoryType::ShareMemory(thread_memory, ctx.as_store_ref());

    // Now spawn a thread
    trace!("threading: spawning background thread");
    let run = move |props: TaskWasmRunProperties| {
        execute_module(props.ctx, props.store);
    };
    tasks
        .task_wasm(
            TaskWasm::new(Box::new(run), thread_env, thread_module, false)
                .with_globals(&globals)
                .with_memory(spawn_type),
        )
        .map_err(Into::<Errno>::into)?;

    // Success
    Ok(())
}

/// Calls the module
fn call_module<M: MemorySize>(
    mut ctx: WasiFunctionEnv,
    mut store: Store,
    start_ptr_offset: M::Offset,
    thread_handle: Arc<WasiThreadHandle>,
    rewind_state: Option<(RewindState, RewindResultType)>,
) -> Result<Tid, Errno> {
    let env = ctx.data(&store);
    let tasks = env.tasks().clone();

    // This function calls into the module
    let call_module_internal = move |env: &WasiFunctionEnv, store: &mut Store| {
        // We either call the reactor callback or the thread spawn callback
        //trace!("threading: invoking thread callback (reactor={})", reactor);
        let spawn = unsafe { env.data(&store).inner() }
            .thread_spawn
            .clone()
            .unwrap();
        let tid = env.data(&store).tid();
        let call_ret = spawn.call(
            store,
            tid.raw().try_into().map_err(|_| Errno::Overflow).unwrap(),
            start_ptr_offset
                .try_into()
                .map_err(|_| Errno::Overflow)
                .unwrap(),
        );
        trace!("callback finished (ret={:?})", call_ret);

        let mut ret = Errno::Success;
        let mut exit_code = None;
        if let Err(err) = call_ret {
            match err.downcast::<WasiError>() {
                Ok(WasiError::ThreadExit) => {
                    trace!("thread exited cleanly");
                    ret = Errno::Success;
                }
                Ok(WasiError::Exit(code)) => {
                    trace!(exit_code = ?code, "thread requested exit");
                    exit_code = Some(code);
                    ret = if code.is_success() {
                        Errno::Success
                    } else {
                        env.data(&store)
                            .runtime
                            .on_taint(TaintReason::NonZeroExitCode(code));
                        Errno::Noexec
                    };
                }
                Ok(WasiError::DeepSleep(deep)) => {
                    trace!("entered a deep sleep");
                    return Err(deep);
                }
                Ok(WasiError::UnknownWasiVersion) => {
                    debug!("failed as wasi version is unknown",);
                    env.data(&store)
                        .runtime
                        .on_taint(TaintReason::UnknownWasiVersion);
                    ret = Errno::Noexec;
                    exit_code = Some(ExitCode::from(128 + ret as i32));
                }
                Err(err) => {
                    debug!("failed with runtime error: {}", err);
                    env.data(&store)
                        .runtime
                        .on_taint(TaintReason::RuntimeError(err));
                    ret = Errno::Noexec;
                    exit_code = Some(ExitCode::from(128 + ret as i32));
                }
            }
        } else {
            debug!("thread exited cleanly without calling thread_exit");
        }

        // Clean up the environment
        env.on_exit(store, exit_code);

        // Return the result
        Ok(ret as u32)
    };

    // If we need to rewind then do so
    if let Some((rewind_state, rewind_result)) = rewind_state {
        let mut ctx = ctx.env.clone().into_mut(&mut store);
        let res = rewind_ext::<M>(
            &mut ctx,
            Some(rewind_state.memory_stack),
            rewind_state.rewind_stack,
            rewind_state.store_data,
            rewind_result,
        );
        if res != Errno::Success {
            return Err(res);
        }
    }

    // Now invoke the module
    let ret = call_module_internal(&ctx, &mut store);

    // If it went to deep sleep then we need to handle that
    match ret {
        Ok(ret) => {
            // Frees the handle so that it closes
            drop(thread_handle);
            Ok(ret as Pid)
        }
        Err(deep) => {
            // Create the callback that will be invoked when the thread respawns after a deep sleep
            let rewind = deep.rewind;
            let respawn = {
                let tasks = tasks.clone();
                move |ctx, store, trigger_res| {
                    // Call the thread
                    call_module::<M>(
                        ctx,
                        store,
                        start_ptr_offset,
                        thread_handle,
                        Some((rewind, RewindResultType::RewindWithResult(trigger_res))),
                    );
                }
            };

            /// Spawns the WASM process after a trigger
            unsafe {
                tasks.resume_wasm_after_poller(Box::new(respawn), ctx, store, deep.trigger)
            };
            Err(Errno::Unknown)
        }
    }
}